Answer:
4 blocks west is final displacement. So 4 blocks per hour
Answer:
The three different examples of the accelerated motion are Falling/dropping of ball, Standing in circular rotating space, moving around the circle.
Explanation:
Acceleration is the change in velocity, which is related to the speed and direction in which the object is travelling. Hence, speeding up, slowing down and turning are few types . A simple example would be dropping a ball: as it falls its speed increases, which is a type of acceleration. A more complicated example would be standing in a circular, rotating space station. A point on the station moves in a circle, meaning that as it travels it must be turning (to remain in circular motion) making this another example of acceleration
The sun orbits the eth at 2kilogram per sec
Answer:
Subtract the kinetic energy at the bottom from the potential energy loss. The remainder becomes frictional heat.
Potential energy loss:
M g H = 21.7*9.81*3.5 = 745.1 J
Kinetic energy at bottom of slide:
= (1/2) M v^2 = 52.5 J
When the ball starts its motion from the ground, its potential energy is zero, so all its mechanical energy is kinetic energy of the motion:

where m is the ball's mass and v its initial velocity, 20 m/s.
When the ball reaches its maximum height, h, its velocity is zero, so its mechanical energy is just gravitational potential energy:

for the law of conservation of energy, the initial mechanical energy must be equal to the final mechanical energy, so we have

From which we find the maximum height of the ball:

Therefore, the answer is
yes, the ball will reach the top of the tree.