9514 1404 393
Answer:
(c) 1.649
Step-by-step explanation:
For a lot of these summation problems it is worthwhile to learn to use a calculator or spreadsheet to do the arithmetic. Here, the ends of the intervals are 1 unit apart, so we only need to evaluate the function for integer values of x.
Almost any of these numerical integration methods involve some sort of weighted sum. For <em>trapezoidal</em> integration, the weights of all of the middle function values are 1. The weights of the first and last function values are 1/2. The weighted sum is multiplied by the interval width, which is 1 for this problem.
The area by trapezoidal integration is about 1.649 square units.
__
In the attached, we have shown the calculation both by computing the area of each trapezoid (f1 does that), and by creating the weighted sum of function values.
Step-by-step explanation:
<u>to </u><u>evaluate</u><u> </u><u>the </u><u>difference</u><u> </u><u>between</u><u> </u><u>them </u><u>so,</u>
<u>subtract </u><u>1</u><u>.</u><u>8</u><u> </u><u>by </u><u>5</u><u>.</u><u>1</u>
<u>so,</u>
<u>5</u><u>.</u><u>1</u><u> </u><u>-</u><u> </u><u>1</u><u>.</u><u>8</u><u> </u><u>=</u><u> </u><u>3</u><u>.</u><u>3</u>
<u>so </u><u>difference</u><u> </u><u>between</u><u> </u><u>them </u><u>is </u><u>3</u><u>.</u><u>3</u>
<u>hope </u><u>this</u><u> answer</u><u> helps</u><u> you</u><u> dear</u><u>.</u><u>.</u><u>take </u><u>care</u><u> and</u><u> may</u><u> u</u><u> have</u><u> a</u><u> great</u><u> day</u><u> ahead</u><u>!</u>
Answer:
y = -7.5 I believe
Step-by-step explanation: