You are looking for an element in the fourth period and a transition metal. As most have about 3 valence electrons. Gallium and Scandium work perfectly.
To get moles. divide mass by molar mass.Molar mass of
Na is 23
and for Cl is 35.5.
the total molar mass of NaCl is 23+35.5 = 58.5mol/gUse the mass and divide by this number30.22g divide by 58.5mol/g and you will get 0.5166 mole.
Since the molecule has 1 Na to 1 Cl, and that the number of moles for NaCL is 0.5166. All of them would be 0.5166molesNa = 0.5166 x 1 = 0.5166molesCl = 0.5166 x 1 = 0.5166moles
to get number of atoms. Multiply your mole by Avogadro number which is 6.022x10^23Na = 0.5166 x 6.022E23 = 3.111x10^23Cl = 0.5166 x 6.022E23 = 3.111x10^23
Answer:
7. A) I, II
; 8. D) 2.34e9 kJ
Step-by-step explanation:
7. Combustion of ethanol
I. The negative sign for ΔH shows that the reaction is exothermic.
II. The enthalpy change would be different if gaseous water were produced.
That's because it takes energy to convert liquid water to gaseous water, and this energy is included in the value of ΔH.
III. The reaction is a redox reaction, because
- Oxygen is reacting with a compound
- The oxidation number of C increases
- The oxidation number of O decreases.
IV. The products of the reaction occupy a smaller volume than the reactants, because 3 mol of gaseous reactant are forming 2 mol of gaseous product.
Therefore, only I and II are correct.
7. Hindenburg
Data:
V = 2.00 × 10⁸ L
p = 1.00 atm
T = 25.1 °C
ΔH = -286 kJ·mol⁻¹
Calculations:
(a) Convert temperature to kelvins
T = (25.1 + 273.15) K = 298.25 K
(b) Moles of hydrogen
Use the <em>Ideal Gas Law</em>:
pV = nRT
n = (pV)/(RT)
n = (1.00 × 2.00 × 10⁸)/(0.082 06 × 298.25) = 8.172 × 10⁶ mol
(c) Heat evolved
q = nΔH = 8.172 × 10⁶ × (-286) = -2.34 × 10⁹ kJ
The hydrogen in the Hindenburg released 2.34e9 kJ
.
Relative atomic mass of NaCl=23+35.5=58.5
2000kg / 58.5 = mass per relative atomic mass = 34.188
34.188 * atomic mass of Na, 34.188 * 23 = 786.325... = 790 kg (2s.f.)
The chemical formula is SnO2