Answer:
B) -7
Step-by-step explanation:
x+y
8+(-15)=8-15=-7
Step-by-step explanation:
The value of sin(2x) is \sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
How to determine the value of sin(2x)
The cosine ratio is given as:
\cos(x) = -\frac 14cos(x)=−
4
1
Calculate sine(x) using the following identity equation
\sin^2(x) + \cos^2(x) = 1sin
2
(x)+cos
2
(x)=1
So we have:
\sin^2(x) + (1/4)^2 = 1sin
2
(x)+(1/4)
2
=1
\sin^2(x) + 1/16= 1sin
2
(x)+1/16=1
Subtract 1/16 from both sides
\sin^2(x) = 15/16sin
2
(x)=15/16
Take the square root of both sides
\sin(x) = \pm \sqrt{15/16
Given that
tan(x) < 0
It means that:
sin(x) < 0
So, we have:
\sin(x) = -\sqrt{15/16
Simplify
\sin(x) = \sqrt{15}/4sin(x)=
15
/4
sin(2x) is then calculated as:
\sin(2x) = 2\sin(x)\cos(x)sin(2x)=2sin(x)cos(x)
So, we have:
\sin(2x) = -2 * \frac{\sqrt{15}}{4} * \frac 14sin(2x)=−2∗
4
15
∗
4
1
This gives
\sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
Isolate the variable by dividing each side by factors that don't contain the variable.
Exact Form:
c=1/4
Decimal Form:
c=0.25
Answer: $270
Step-by-step explanation:
I = prt
I = 0.18 x 750 x 2
I = 135 X 2
I = 270
Answer:
y=6^x-2
Step-by-step explanation:
Start with the parent function, a^x. The graph looks like it has been translated b units down, so our function is a^x+b. Now at x=0, y=-2. So b=-2. Next at x=1, y=3. 3=a^(1)-2, a=6. y=6^x-2 is the equation