Θ
=
arcsin
(
.7
4.2
)
≈
10
∘
Explanation:
We view the ramp as a right triangle. The hypotenuse is 4.2 and the vertical side .7, which is opposite the angle
θ
we seek.
sin
θ
=
.7
4.2
=
1
6
I'm going to finish the problem but I'll note if we were actually building the ramp we don't need to know the angle; this sine is sufficient.
θ
=
arcsin
(
1
6
)
θ
≈
10
∘
which I think is a pretty steep ramp for a wheelchair.
There will be another inverse sine that is the supplementary angle, around
170
∘
, but we can rule that out as a value for a ramp wedge angle.
Divide 22.2 by 4 since the perimeter is the outside and there are 4 edges
17x + 16x + 12x =180
45x = 180
x = 4
Largest angle = 17*4 = 68 degrees