1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kaylis [27]
3 years ago
10

Exit ticket

Physics
1 answer:
kirill115 [55]3 years ago
7 0

Why did the narrator use the phrase “fit together like puzzle pieces” to describe how the cells of a developing human embryo form a human face

You might be interested in
Which of the following statements is true?
viva [34]
Statement B is correct.
4 0
3 years ago
Read 2 more answers
Write a sentence to describe how an image is formed on retina<br>when looking at distant objects.​
beks73 [17]

Answer:

An image is formed on the retina with light rays converging most at the cornea and upon entering and exiting the lens. Rays from the top and bottom of the object are traced and produce an inverted real image on the retina. The distance to the object is drawn smaller than scale

7 0
3 years ago
The period P of a pendulum depend on its length , mass as well as the acceleration due to gravity . Use dimensional analysis to
Savatey [412]

Explanation:

Period P has units of seconds (s).

Length has units of meters (m).

Mass has units of kilograms (kg).

Acceleration has units of meters per second squared (m/s²).

Dimensional analysis:

s = √(m / (m/s²))

Therefore:

P = k √(L/g)

where k is a dimensionless constant.

6 0
3 years ago
A jeweler working with a heated 47 g gold ring must lower the ring's temperature to make it safe to handle. If the ring is initi
Gelneren [198K]

Mass of gold m₁ = 47 g

Initial temperature of gold T₁ = 99 C

Specific heat of gold C₁ = 0.129 J/gC

final temperature T₂ = 38 C

Heat needed by the gold to cool down

Q =m₁ * C₁* ( T₁ - T₂)

Q = (47)(0.129)(99-38)

Q = 369.843 J

This heat will be given by the water

we need to find out mass of water m₂

and initial temperature of water is T₃ = 25 C

Specific heat of water C₂ = 4.184 J/gC

Q = m₂*C₂*(T₂ - T₃)

369.843 = m₂(4.184)(38-25)

m₂ = 6.8 g

6 0
3 years ago
Read 2 more answers
4) A satellite, mass m, is in circular orbit (radius r) around the earth, which has mass ME and radius Re. The value of r is lar
defon
<h2>Answers:</h2>

(a) The kinetic energy of a body is that energy it possesses due to its movement and is defined as:

K=\frac{1}{2}m{V}{2}     (1)

Where m is the mass of the body and V its velocity.

In this specific case of the satellite, its kinetic energy K_m taking into account its mass m is:

K_{m}=\frac{1}{2}m{V}^{2}     (2)

On the other hand, the velocity of a satellite describing a circular orbit is constant and defined by the following expression:

V=\sqrt{G\frac{ME}{r}}     (3)

Where G is the gravity constant, ME the mass of the Earth and r the radius of the orbit <u>(measured from the center of the Earth to the satellite). </u>

Now, if we substitute the value of V from equation (3) on equation (2), we will have the final expression of the kinetic energy of this satellite:

K_{m}=\frac{1}{2}m{\sqrt{G\frac{ME}{r}}}^{2}     (4)

Finally:

K_{m}=\frac{1}{2}Gm\frac{ME}{r}     (5)  >>>>This is the kinetic energy of the satellite

(b) According to Kepler’s 2nd Law applied in the case of a circular orbit, its Period T is defined as:

T=2\pi\sqrt{\frac{r^{3}}{\mu}}     (6)

Where \mu is a constant and is equal to GME. So, this equation in these terms is written as:

T=2\pi\sqrt{\frac{r^{3}}{GME}}     (7)

As we can see, <u>the Period of the orbit does not depend on the mass of the satellite </u>m, it depends on the mass of the greater body (the Earth in this case) ME, the radius of the orbit and the gravity constant.

(c) The gravitational force described by the law of gravity is a central force and therefore is <u>a conservative force</u>. This means:

1. The work performed by a gravitational force to move a body from a position A to a position B <u>only depends on these positions and not on the path followed to get from A to B. </u>

2. When the path that the body follows between A and B is a c<u>losed path or cycle</u> (as this case with a <u>circular orbit</u>), <u>the gravitational work is null or zero</u>.

<h2>This is because the gravity force that maintains an object in circular motion is a centripetal force, that is, <u>it always acts perpendicular to the movement</u>. </h2>

Then, in the case of the satellite orbiting the Earth in a circular orbit, its movement will always be perpendicular to the gravity force that attracts it to the planet, at each point of its path.

(d)  The total Mechanical Energy E of a body is the sum of its Kinetic Energy K and its Potential Energy P:

E=K+P     (8)

But in this specific case of the circular orbit, its kinetic energy will be expresses as calculated in the first answer (equation 5):

K_{m}=\frac{1}{2}Gm\frac{ME}{r}     (5)

And its potential energy due to the Earth gravitational field as:

P_{m}=-G\frac{mME}{r}     (9)

This energy is negative by definition.

So, the total mechanical energy of the orbit, also called the Orbital Energy is:

E=\frac{1}{2}Gm\frac{ME}{r}+(- G\frac{mME}{r})      (10)

Solving equation (10) we finally have the Orbital Energy:

E=-\frac{1}{2}mME\frac{G}{r}     (11)

At this point, it is necessary to clarify that a satellite (or any other celestial body) orbiting another massive body, can describe one of these types of orbits depending on its Orbital Total Mechanical Energy E:

-When E=0:

We are talking about an <u>open orbit</u> in which the satellite escapes from the attraction of the planet's gravitational field. The shape of its trajectory is a parabola, fulfilling the following condition:

K_{m}=-P_{m}

Such is the case of some comets in the solar system.

-When E>0:

We are also talking about <u>open orbits</u>, which are hyperbolic, being K_{m}>P_{m}

<h2>-When E: >>>><u>This case</u></h2>

We are talking about <u>closed orbits</u>, that is, the satellite will always be "linked" to the gravitational field of the planet and will describe an orbit that periodically repeats with a shape determined by the relationship between its kinetic and potential energy, as follows:

-Elliptical orbit: Although E is constant, K_m and P_m are changing along the trajectory .

-Circular orbit: When at all times both the kinetic energy K_m and the potential P_m remain constant, resulting in a total mechanical energy E as the one obtained in this exercise. This means that the speed is constant too and <u>is the explanation of why this Energy has a negative sign. </u>

3 0
4 years ago
Other questions:
  • The term necrosis means
    10·1 answer
  • Find the time t it takes the current to reach 99.999% of its maximum value. assume that r=10 ohms and l=50 millihenrys.
    6·1 answer
  • Think back to the example in the Warm-Up: A business owner wants to open a restaurant, but many residents do not want a business
    7·1 answer
  • What is resistivity​
    7·1 answer
  • A disk rotates at constant angular acceleration, from angular position θ1 = 16.0 rad to angular position θ2 = 76.0 rad in 5.30 s
    15·1 answer
  • Which of the following sequences describes the path by which electrons travel downhill energetically in aerobic respiration
    9·1 answer
  • Calculate the time required (in years) for water to penetrate a layer of clay that is 40 cm deep when exposed to a hydraulic gra
    7·2 answers
  • which of the numbers on this figure indicates typical continental conditions (regional metamorphism)?
    5·2 answers
  • With a bit of algebraic reasoning find your gravitational acceleration toward any planet of mass M a distance d from its center.
    9·1 answer
  • photon strikes the surface of tungsten and an electron is emitted. what is the maximum possible speed of the electron?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!