As the temperature increases, the solubility of the solute in the liquid also increases. This is due to the fact that the increase in energy allows the liquid to more effectively break up the solute. The additoin of energy also shifts the equilibrium of the reation to the right since it takes energy to dissolve most things and you are adding more of it (this is explained with Le Chatlier principles).
I hope this helps and also I assumed that your question involved the solubility of an ionic substance in a solvent like water. If that was not your question feel free to say so in the comments so that I can answer your actually question.
A) Energy is released during the formation of the bond.
Explanation:
During the formation of a chemical bonds between two hydrogen atoms, energy is always released during the formation of this bond type.
Bond formation process is usually exothermic and energy is released during the formation of the bond.
- Bond breaking process is an endothermic process in which energy is absorbed from the surrounding.
- Whenever a bond is broken, the bond energy value is positive but when a bond is formed, the bond energy value is given a negative sign.
For a bond formation process in which hydrogen atoms are bonded covalently, energy is usually released.
Learn more:
Enthalpy changes brainly.com/question/10567109
#learnwithBrainly
According to Grahams law the rate of effusion of a gas is inversely proportional to the square root of it's molecular weight. The rate of diffusion is the measure of rate at which two gases mix. From this law we can say that for the two gases carbon monoxide and carbon dioxide, the rate of effusion of carbon monoxide is greater than that of carbon dioxide, this is because carbon monoxide is lighter (28 g) compared to carbon dioxide (44 g).
If you do not inflate the life raft to make completely filled out, as long as you do not press or squeeze the life raft, the air inside it will be in equilibrium with the air outside the raft, and so the pressure inside the life raft will be the same atmospheric pressure, 14.7 psi.
Note that when the raft is swollen, if you punch it, the air will leave from it which means that the pressure inside is greater than the atmospheric pressure.