Stoichiomety:
1 moles of C + 1 mol of O2 = 1 mol of CO2
multiply each # of moles times the atomic molar mass of the compund to find the relation is weights
Atomic or molar weights:
C: 12 g/mol
O2: 2 * 16 g/mol = 32 g/mol
CO2 = 12 g/mol + 2* 16 g/mol = 44 g/mol
Stoichiometry:
12 g of C react with 32 g of O2 to produce 44 g of CO2
Then 18 g of C will react with: 18 * 32/ 12 g of Oxygen = 48 g of Oxygen
And the result will be 12 g of C + 48 g of O2 = 60 g of CO2.
You cannot obtain 72 g of CO2 from 18 g of C.
May be they just pretended that you use the law of consrvation of mass and say that you need 72 g - 18g = 54 g. But it violates the proportion of C and O2 in the CO2 and is not possible.
Answer:
35.8 g
Explanation:
Step 1: Given data
Mass of water: 63.5 g
Step 2: Calculate how many grams of KCl can be dissolved in 63.5. g of water at 80 °C
Solubility is the maximum amount of solute that can be dissolved in 100 g of solute at a specified temperature. The solubility of KCl at 80 °C is 56.3 g%g, that is, we can dissolve up to 56.3 g of KCl in 100 g of water.
63.5 g Water × 56.3 g KCl/100 g Water = 35.8 g KCl
Answer:
There are many properties that scientists use to describe waves. They include amplitude, frequency, period, wavelength, speed, and phase. Each of these properties is described in more detail below. When drawing a wave or looking at a wave on a graph, we draw the wave as a snapshot in time.
Explanation: