To accelerate a 34.01 kg-car at 0.55 m/s², a force of 19 N will be required, according to Newton's Second Law of Motion.
<h3>What does Newton's Second Law of Motion state?</h3>
Newton's Second Law of Motion states that acceleration (a) happens when a force (F) acts on a mass (m).
We want a car of mass 34.01 kg to have an acceleration of 0.55 m/s². We can calculate the required force using Newton's Second Law of Motion.
F = m × a = 34.01 kg × 0.55 m/s² = 19 N
To accelerate a 34.01 kg-car at 0.55 m/s², a force of 19 N will be required, according to Newton's Second Law of Motion.
Learn more about Newton's Second Law of Motion here: brainly.com/question/25545050
#SPJ1
It conserves both energy and momentum in the collision at the same time. By design, when the balls collide the strings that hold them up are vertical (assuming balls are only swung from one side).
: Hope this helps :)
Answer:
90 meters.
Explanation:
The correct answer is: B.) 90 m
I think the answer would be tensile, I’m sorry if it’s wrong