Given:
The initial velocity of the object, v=30 m/s
a_t=0
a_c≠0
The time period is Δt.
To find:
The right conclusion among the given choices.
Explanation:
a_t represents the tangential accleration on the object and a_c represents the centripetal acceleration on the object.
The centripetal acceleration is the acceleration that keeps the object in its circular path. The centripetal force only changes the direction of the velocity and not the magnitude.
Thus the magnitude of the velocity of the object remains the same after a time interval of Δt. But the direction of the velocity of the object will be changed and will be unknown after Δt seconds.
Final answer:
Thus the object will be traveling at 30 m/s in some unknown direction.
Therefore, the correct answer is option a.
The acceleration of the particle at time t is:

The velocity of the particle at time t is given by the integral of the acceleration a(t):

and the position of the particle at time t is given by the integral of the velocity v(t):

Assuming the particle starts from position x(0)=0 at t=0, the distance the particle covers in the first t=2 seconds can be found by substituting t=2 s in the equation of x(t):
When you're using a crowbar to lift a large rock, you are working against the force called


Gravity on Earth is what gives weight to all objects, it's defined as all things that have mass or energy are gravitated towards each other. Therefore when you're using a crowbar to lift a large rock, the weight is caused by
gravity.
I hope this helps you!
Answer: C
Both Technicians A and B
Explanation:
Only a DOT-approved flasher unit should be used for turn signals. And a parallel (variable-load) flasher will function for turn signal usage, although it will not warn the driver if a bulb burns out.