To solve this problem it is necessary to apply the related concepts to string vibration. This concept shows the fundamental frequency of a string due to speed and length, that is,

Where
v = Velocity
L = Length
Directly if the speed is maintained the frequency is inversely proportional to the Length:

Therefore the relationship between two frequencies can be described as


Our values are given as,

Therefore the second frequency is

The frequency allocation of 329Hz is note E.
The height of the ball when lifted is given by 7sin(25)=2.96
the gravitational energy is mgh, the kinetic is (1/2)mv². We can set these equal since the pendulum doesn't lose much energy
mgh = (1/2)mv²
we can divide by m (since we don't have it anyways)
gh = v²/2
v=√(gh/2) = √(9.81*2.96/2)=3.8m/s.
Not exactly one of your choices, but the right one none the less
Newton stated 3 laws that rules moving bodies:
First law - an object remains in its state (resting or moving at constant speed) unless acted upon a force
Second law - the force (F) of an object is equal to its mass (m) multiplied by its acceleration (a); F = m x a
Third law - when an object exerts a force upon another, the second object exerts a force that is equal in magnitude and opposite in direction
So, according to the First Law of Motion, the metor moving through outer space will continues its motion until an outside force acts upon it
Newton's law of universal gravitation states that every particle attracts every other particle in the universe with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.
This is mathematically represented as
<u>F= (G X m1 x m2) /r∧2</u>
where F is the force acting between the charged particles
r is the distance between the two charges measured in m
G is the gravitational constant which has a value of <em>6.674×10^-11 Nm^2 kg^-2</em>
m1 and m2 are the masses of the objects measured in Kg
Now if the distance between the is doubled then r becomes 2r. Substituting this in the above formula we get the new Force as
Force (new) = (G X m1 x m2) /(2r)∧2
Thus dividing Force(new)/Force we get
Force(new)/Force = 1/4.
Thus the gravitational force becomes 1/4th of the original value if the distance between the two masses are doubled.
Explanation:
weight =0.454 × 9.8=4.4492N