1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Basile [38]
3 years ago
9

Suppose the B string on a guitar is 24" long and vibrates with a frequency of about 247 Hz. You place your finger on the 5th fre

t, which changes the length of the string to 18". Which note do you hear when you play the string D (about 294 Hz) O E (about 329 Hz) OG (about 392 Hz)
Physics
1 answer:
pashok25 [27]3 years ago
8 0

To solve this problem it is necessary to apply the related concepts to string vibration. This concept shows the fundamental frequency of a string due to speed and length, that is,

f = \frac{v}{2L}

Where

v = Velocity

L = Length

Directly if the speed is maintained the frequency is inversely proportional to the Length:

f \propto \frac{1}{L}

Therefore the relationship between two frequencies can be described as

\frac{f_2}{f_1}=\frac{l_1}{l_2}

f_2 = \frac{l_1}{l_2}(f_1)

Our values are given as,

l_1 = 24"\\f_1 = 247Hz\\l_2 = 18"

Therefore the second frequency is

f_2 = \frac{l_1}{l_2}(f_1)\\f_2 = \frac{24}{18}(247)\\f_2 = 329.33Hz

The frequency allocation of 329Hz is note E.

You might be interested in
The graph shows the amplitude of a passing wave over time in seconds (s). What is the approximate frequency of the wave shown?
belka [17]

Answer:

B) 0.3Hz

Explanation:

I just took the test i hope i helped and i hope you pass the test

7 0
3 years ago
Read 2 more answers
The transfer of energy that occurs when a force is applied over a distance is
astra-53 [7]
The transfer of energy that occurs when a force is applied over a distance is WORK.
3 0
3 years ago
What will occur when the trough of Wave A overlaps the trough of Wave B?
Pavel [41]
C because the wave length was longer
6 0
3 years ago
Read 2 more answers
A solid uniform disk of diameter 3.20 m and mass 42 kg rolls without slipping to the bottom of a hill, starting from rest. If th
Korvikt [17]

Answer:

A(3.56m)

Explanation:

We have a conservation of energy problem here as well. Potential energy is being converted into linear kinetic energy and rotational kinetic energy.

We are given ω= 4.27rad/s, so v = ωr, which is 6.832 m/s. Place your coordinate system at top of the hill so E initial is 0.

Ef= Ug+Klin+Krot= -mgh+1/2mv^2+1/2Iω^2

Since it is a solid uniform disk I= 1/2MR^2, so Krot will be 1/4Mv^2(r^2ω^2=  v^2).

Ef= -mgh+3/4mv^2

Since Ef=Ei=0

Mgh=3/4mv^2

gh=3/4v^2

h=0.75v^2/g

plug in givens to get h= 3.57m

5 0
3 years ago
After polishing his 2-kg wrestling trophy, Mike sets it down on the ground and walks away to find more polish. Meanwhile, Julie
klio [65]

1) The initial momentum of the trophy is zero

2) The initial momentum of the bowling ball is 160 kg m/s

3) The total momentum before the collision is 160 kg m/s

4) The total momentum of the system after the collision is 160 kg m/s

5) The final velocity of the trophy is 32 m/s

Explanation:

1)

The momentum of an object is given by

p=mv

where

m is the mass of the object

v is its velocity

In this problem, the data for the trophy before the collision are:

m = 2 kg is the mass

v = 0 is its initial velocity

Therefore, the initial momentum of the trophy is

p_1=(2)(0)=0

2)

Using the same equation used in part 1), the initial momentum of the bowling ball is

p=mv

where

m is the mass of the bowling ball

v is its initial velocity

The data of the problem are

m = 8 kg is the mass

v = 20 m/s is the velocity

Substituting,

p_2=(8)(20)=160 kg m/s

3)

The total momentum of the system before the collision is given by the sum between the initial momentum of the trophy and the initial momentum of the bowling ball:

p_i = p_1 + p_2

where

p_1 is the initial momentum of the trophy

p_2 is the initial momentum of the ball

Here we have

p_1 = 0

p_2 = 160 kg m/s

Therefore, the total momentum is

p_i = 0 + 160 = 160 kg m/s

4)

According to the law of conservation of momentum, for an isolated system (=no external unbalanced forces acting on the system), the total momentum of the system is conserved before and after the collision:

p_i = p_f

where

p_i is the total momentum before the collision

p_f is the total momentum after the collision

If we consider the system in the problem to be isolated (i.e. no frictional forces acting on the ball or the trophy), we can therefore say that the total momentum after the collision must be equal to the total momentum before the collision: therefore,

p_f = 160 kg m/s

5)

We can write the total momentum after the collision as

p_f = m_1 v_1 + m_2 v_2

where:

m_1 = 2 kg is the mass of the trophy

v_1 is the final velocity of the trophy

m_2 = 8 kg is the mass of the bowling ball

v_2 = 12 m/s is the final velocity of the ball

Since we also know the value of the final total momentum,

p_f = 160 kg m/s

we can solve the equation to find the velocity of the trophy:

v_1 = \frac{p_f - m_2 v_2 }{m_1}=\frac{160-(8)(12)}{2}=32 m/s

Learn more about momentum:

brainly.com/question/7973509

brainly.com/question/6573742

brainly.com/question/2370982

brainly.com/question/9484203

#LearnwithBrainly

4 0
3 years ago
Other questions:
  • Find the smallest positive phase of the mass on a spring that undergoes simple harmonic motion if at time t = 0.1 s the position
    12·1 answer
  • Mari places a marble at the top of a ramp and lets it go. It rolls down. At the bottom of the ramp, the marble bumps into a bloc
    7·2 answers
  • _______________have a negative charge and are located on the outside of the nucleus.
    6·1 answer
  • An apple is placed 20.0 cm in front of a diverging lens of focal length 10.0 cm. Find the image distance and the magnification o
    12·1 answer
  • Heather writes the equations below to represent two lines drawn on the coordinate plane. –6x + 18y = 0 4x – 12y = 20 After a
    12·2 answers
  • An electric field around two charged objects is shown.
    15·1 answer
  • Tina just threw a 0.15 kg ball straight up in the air. If the ball reaches
    11·1 answer
  • Velocity v (m/s)
    12·1 answer
  • State the five important assumptionns of the kinetic theory of matter
    7·1 answer
  • When you jump, you exert a pushing force against the ground. Gravity pulls you back down. Why can a person jump higher on the mo
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!