Yes, anything with carbonate, hydrogen carbonate (bicarbonate) at the end is a carbonate.
Examples:NaHCO3 (Sodium hydrogen carbonate or Sodium bicarbonate)Na2CO3 (Sodium carbonate)
Answer:
1. C+ ---- O-
2. O+ ---- Cl-
3. O+ ----- F-
4. C+ ----- N-
5. Cl- ----- C+
6. S- ----- H+
7. S+ ----- Cl -
Explanation:
Electronegativity determines the polarity . There may be two atoms in a bond with high electronegativity, in such cases the positive charge is given to atom with comparatively lower electronegativity. Electronegativity determines the easiness with which an atom attract electrons in a chemical bond. A polar bond is formed when the difference in the electronegativity of two combining atoms is between 0.4 and 1.7. The correct direction is
1. C+ ---- O-
2. O+ ---- Cl-
3. O+ ----- F-
4. C+ ----- N-
5. Cl- ----- C+
6. S- ----- H+
7. S+ ----- Cl -
Answer: If the potential energy of the reaction system decreases, then kinetic energy in the surroundings increases and the temperature of the surroundings rises
Explanation:
Answer:
The partial pressure of Ar is 356.04 mm Hg (= 0.4685 atm)
Explanation:
<u>Step 1:</u> Data given
A mixture of three gases has a total pressure of 1380 mm Hg (=1.81579 atm) at 298 K
Moles of CO2 = 1.27 moles
Moles of CO = 3.04 moles
Moles of Ar = 1.50 moles
<u>Step 2:</u> Calculate total number of moles
Total number of moles = n(CO2)+ n(CO)+ n(Ar) = 1.27 mol+ 3.04 mol+ 1.50 mol = 5.81 moles
<u>Step 3:</u> Calculate mol fraction Ar
Mol fraction Ar = 1.50 mol/5.81 mol = 0.258
<u>Step 4</u>: Calculate partial pressure
1380 mm Hg * 0.258 moles Ar = 356.04 mm Hg = 0.4685 atm
The partial pressure of Ar is 356.04 mm Hg (= 0.4685 atm)