Answer:
- <em>The volume of 14.0 g of nitrogen gas at STP is </em><u><em>11.2 liter.</em></u>
Explanation:
STP stands for standard pressure and temperature.
The International Institute of of Pure and Applied Chemistry, IUPAC changed the definition of standard temperature and pressure (STP) in 1982:
- Before the change, STP was defined as a temperature of 273.15 K and an absolute pressure of exactly 1 atm (101.325 kPa).
- After the change, STP is defined as a temperature of 273.15 K and an absolute pressure of exactly 105 Pa (100 kPa, 1 bar).
Using the ideal gas equation of state, PV = nRT you can calculate the volume of one mole (n = 1) of gas. With the former definition, the volume of a mol of gas at STP, rounded to 3 significant figures, was 22.4 liter. This is classical well known result.
With the later definition, the volume of a mol of gas at STP is 22.7 liter.
I will use the traditional measure of 22.4 liter per mole of gas.
<u>1) Convert 14.0 g of nitrogen gas to number of moles:</u>
- n = mass in grams / molar mass
- Atomic mass of nitrogen: 14.0 g/mol
- Nitrogen gas is a diatomic molecule, so the molar mass of nitrogen gas = molar mass of N₂ = 14.0 × 2 g/mol = 28.0 g/mol
- n = 14.0 g / 28.0 g/mol = 0.500 mol
<u>2) Set a proportion to calculate the volume of nitrogen gas:</u>
- 22.4 liter / mol = x / 0.500 mol
- Solve for x: x = 0.500 mol × 22.4 liter / mol = 11.2 liter.
<u>Conclusion:</u> the volume of 14.0 g of nitrogen gas at STP is 11.2 liter.
Answer:
A. Occur in gaseous and liquid state
Explanation:
The choice that is not a characteristic of minerals is that minerals occur in gaseous and liquid state.
All minerals are solid inorganic compounds.
- A mineral is an inorganic compound that is formed naturally.
- They have a definite and specific chemical composition.
- Minerals are the building blocks of rocks.
- When minerals aggregates together, they form different rock types.
- There is no known mineral that is in fluid state.
- All minerals are solids.
- Examples are quartz, kaolinite, gypsum e.t.c
Answer:
The molar mass is: 18.02 g/mol.
Explanation:
- Mass of two moles of Hydrogen atoms (H2) = 2x 1 g/mol = 2 g/mol.
- Mass of one mole of water (H2O) = 2 g/mol + 16 g/mol = 18 g/mol.
1 mole of Hydrogen= 1.01, so if we have 2 moles of it here, that would be 2.02.
1 mole of Oxygen (that's all we have here)= 16.00
Once you add the two together (2.02+16.00), you will get 18.02.
I hope this made sense! Have a great day!
Answer:
D)
Explanation:
seems like the most logical option out of all listed.
Doxorubicin because it is one of the most powerful drugs in chemotherapy