The correct equation
for the overall reaction can simply be obtained by adding the two separate
equations together. Now when you add the two equations together, the overall K can
be calculated by multiplying the individual K values. Therefore:<span>
K(overall) = K1 * K2 </span>
K(overall) = (1.6 x
10^-10) * (1.5 x 10^7)
<span>K(overall) = 2.4 x
10^-3</span>
Answer:
E) are electrically attracted to each other
Explanation:
Water molecule is polar because there is a difference in electronegativity values between hydrogen and oxygen. The hydrogen side of the molecule has a slight positive charge and the oxygen side is slightly negatively.
Positively and negatively charged ends cause water molecules to attract one another and for this reason water shows the properties mentioned in the question: cohesion, high specific heat, and high heat of vaporization.
Ionic bonds are formed when there is complete transfer of valence electrons between two atoms.
Electronegativity tells the trend of an atom to atract electrons.
You should search for the complete set of rules that indicate whether an ionic or covalent bond happens.
There are two relevant rules to state if whether an ionic bond will happen:
- When the difference of electronegativities between the two atoms is greater than 2.0, then the bond is ionic.
- When the difference is between 1.6 and 2.0, the bond is ionic if one of the elements is a metal.
You need to list the electronegativities of the five elements (there are tables with this information)
Element electronegativity
Cu: 1.9
H: 2.2
Cl 3.16
I: 2.66
S: 2.58
Differences:
Cu / S: 2.58 - 1.9 = 0.68
H / S: 2.58 - 2.2 = 0.38
Cl / S: 3.16 - 2.58 =0.58
I / S: 2.66 - 2.58 = 0.08
Those differences are too low to consider that the bond is ionic.
Then the answer is that none of those atoms forms an ionic bond with sulfur.
Answer:
Sulfur hexafluoride, also known as sulfur(VI) fluoride, is a chemical compound. Its chemical formula is SF6. It contains sulfur in its +6 oxidation state.
Answer:
change in the total mass of substances