I've always been told that it's eight. This is only because the atom has to have the saem protons (positively charged) neutrons and electrons (negatively charged). However this does not occur with all atoms. :)
Answer is 6 Na + (aq) +3 CA swaured + 6 CI- (aq)
Convert the child weight (37.3 pounds) to kilograms
37.3 lb x 0.453 kg /1lb = "A kg"
multiply the dose (9.00mg/kg) by the weight of the child to find how much you need to give him
A kg * 9.00 mg/1kg = "B mg"
calculate the mL of suspension dividing the "B mg" by the concentration of the suspension 60.0 mg/mL
B mg * 1mL/ 60.0 mg = C mL <span>oxcarbazepine</span>
Answer:
3Mg(s) +2P(s) -------> Mg3P2(s) + energy
Keq= [Mg3P2]/[Mg]^3 [P]^2
Explanation:
The equation for the formation of magnesium phosphide from its elements is;
3Mg(s) +2P(s) -------> Mg3P2(s) + energy
Hence we can see that three moles of magnesium atoms combines with two moles of phosphorus atoms to yield one mole of magnesium phosphide. The equation written above is the balanced chemical reaction equation for the formation of the magnesium phosphide.
The equilibrium expression for the reaction K(eq) will be given by;
Keq= [Mg3P2]/[Mg]^3 [P]^2
<h3>
Answer:</h3>
16.7 g H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2NaOH (s) + CO₂ (g) → Na₂CO₃ (s) + H₂O (l)
[Given] 1.85 mol NaOH
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol NaOH → 1 mol H₂O
Molar Mass of H - 1.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of H₂O - 2(1.01) + 16.00 = 18.02 g/mol
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
16.6685 g H₂O ≈ 16.7 g H₂O