I’m pretty sure it’s gravity man
Answer:
<em>The three gases, in the three identical containers, will all have the same number of molecules</em>
Explanation:
If these three gases (Helium He, Neon Ne, and Oxygen
) are all contained in separate identical containers with the same volume. And they are all stored at the same temperature, and pressure. Then, they'll all contain the same number of molecules. This is in line with Avogadro's law which states that "Equal volume of all gases, at the same temperature and pressure, have the same number of molecules."
There is no reaction.
<em>Molecular equation
:</em>
K₂CO₃(aq) + 2NH₄Cl(aq) ⟶ 2KCl(aq) + (NH₄)₂CO₃(aq)
<em>Ionic equation
:</em>
2K⁺(aq) + CO₃²⁻(aq) + 2NH₄⁺(aq) +2Cl⁻(aq) ⟶ 2K⁺(aq) + 2Cl⁻(aq) + 2NH₄⁺(aq) + CO₃²⁻(aq)
<em>Net ionic equation
:</em>
Cancel all ions that appear on both sides of the reaction arrow (underlined).
<u>2K⁺(aq)</u> + <u>CO₃²⁻(aq)</u> + <u>2NH₄⁺(aq</u>) +<u>2Cl⁻(aq)</u> ⟶ <u>2K⁺(aq)</u> + <u>2Cl⁻(aq</u>) + <u>2NH₄⁺(aq)</u> + <u>CO₃²⁻(aq)</u>
<em>All ions cancel</em>. There is no net ionic equation.
Answer:
a) 
b) 
Explanation:
From the question we are told that:
initial Concentration 
Final Concentration 
Final volume needs 
Generally the equation for Volume is mathematically given by




Therefore
The volume of buffer needed is


Missing question: <span>A 5.00 L sample of O2 at a given temperature and pressure contains a 1.08x10^23 molecules. How many molecules would be contained in each of the following at the same temperature and pressure? </span>
a) 5.00 L H2.
<span>b) 5.00 L CO2.
Use </span>Avogadro's Law: The Volume Amount Law: <span>equal </span>volumes<span> of all gases, at the same temperature and pressure, have the same </span>number<span> of molecules. Because hydrogen and carbon(IV) oxide are gases, number of molecules are the same as number of oxygen molecules, so:
a) N(H</span>₂) = 1.08·10²³.
b) N(CO₂) = 1.08·10²³