Answer:
The mass's acceleration is 5 m/s^2 in the minus X direction and 9,8 m/s^2 in the minus Y direction.
Explanation:
By applying the second Newton's law in the X and Y direction we found that in the minus X direction an external force of 10 N is exerted, while in the minus Y direction the gravity acceleration is acting:
X-direction balance force:
Y-direction balance force:
Where ax and ay are the components of the respective acceleration and m is the mass. By solving for each acceleration:
Note that for the second equation above the mass is cancelled and, the Y direction acceleration is minus the gravity acceleration:
For the x component aceleration we must replace the Newton unit:

Answer:
a)Yes will deform plastically
b) Will NOT experience necking
Explanation:
Given:
- Applied Force F = 850 lb
- Diameter of wire D = 0.15 in
- Yield Strength Y=45,000 psi
- Ultimate Tensile strength U = 55,000 psi
Find:
a) Whether there will be plastic deformation
b) Whether there will be necking.
Solution:
Assuming a constant Force F, the stress in the wire will be:
stress = F / Area
Area = pi*D^2 / 4
Area = pi*0.15^2 / 4 = 0.0176715 in^2
stress = 850 / 0.0176715
stress = 48,100.16 psi
Yield Strength < Applied stress > Ultimate Tensile strength
45,000 < 48,100 < 55,000
Hence, stress applied is greater than Yield strength beyond which the wire will deform plasticly but insufficient enough to reach UTS responsible for the necking to initiate. Hence, wire deforms plastically but does not experience necking.
Density is directly proportional to mass. So if there's less matter inside object, its density will also reduce.
Answer:
formula used K=F/∆l
∆l is the elongation of the spring
- F=10N
- ∆l=20mm===> 0.02m
- K=10N divided 0.02m= 500N/m