Answer : The value of the constant for a second order reaction is, 
Explanation :
The expression used for second order kinetics is:
![kt=\frac{1}{[A_t]}-\frac{1}{[A_o]}](https://tex.z-dn.net/?f=kt%3D%5Cfrac%7B1%7D%7B%5BA_t%5D%7D-%5Cfrac%7B1%7D%7B%5BA_o%5D%7D)
where,
k = rate constant = ?
t = time = 17s
= final concentration = 0.0981 M
= initial concentration = 0.657 M
Now put all the given values in the above expression, we get:


Therefore, the value of the constant for a second order reaction is, 
25km/h = 6.94 m/s
suvat
s=16
u=6.94
v=0
a=a
v^2=u^2+2as
(v^2-u^2)/2s = a =1.5ms^-2
Answer:
The answer is "telescopes".
Explanation:
Throughout ancient times, astronomical observatories have indeed been available, and so many historical locations were reserved for astronomical observations. All contemporary astronomers lacked within those older telescopes were lenses until 1610. A telescope is indeed an instrument used to view far-off objects. Telescopes often are being used to look at planets and stars.
In order to overcome an object’s inertia (resistance to change), it must be acted upon by an unbalanced force, so the answer to the problem is letter C.
It's is True that your body temperature your body converts chemical potential energy into thermal energy