The deceleration of the rocket sled if it comes to rest in 1.1 s from a speed of 1000 km/h is
.
The acceleration in opposite direction is known as the deceleration. Basically the deceleration is negative value of the acceleration since the negative sign depicts its opposite in direction.
The given data:
time, t = 1.1 s
initial speed, u = 1000 km/h = 
final speed, v = 0 m/s
So we will be using the equation of motion, that is,
v = u + at



Hence , the deceleration of the rocket is
.
To learn more about Attention here:
brainly.com/question/28500124
#SPJ4
Answer:
Option (c) is correct.
Explanation:
Acceleration of an object is given by the formula as follows :

Where
u and v are initial and final velocity
t is time
(v-u) is also called the change in velocity
So, the acceleration of an object is equal to the rate of change of velocity. Hence, the correct option is (c) " Change in its velocity divided by the change in time".
Answer:
+1.46×10¯⁶ C
Explanation:
From the question given above, the following data were obtained:
Charge 1 (q₁) = +26.3 μC = +26.3×10¯⁶ C
Force (F) = 0.615 N
Distance apart (r) = 0.750 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Charge 2 (q₂) =?
The value of the second charge can be obtained as follow:
F = Kq₁q₂ / r²
0.615 = 9×10⁹ × 26.3×10¯⁶ × q₂ / 0.750²
0.615 = 236700 × q₂ / 0.5625
Cross multiply
236700 × q₂ = 0.615 × 0.5625
Divide both side by 236700
q₂ = (0.615 × 0.5625) / 236700
q₂ = +1.46×10¯⁶ C
NOTE: The force between them is repulsive as stated from the question. This means that both charge has the same sign. Since the first charge has a positive sign, the second charge also has a positive sign. Thus, the value of the second charge is +1.46×10¯⁶ C
Thats a hard one, From The looks of it, it looks like B, Because it would leave a gap in the flow for a small amount of time