Answer:
There are six kinds of forces that act on objects when they come into contact with one another: Normal force, applied force, frictional force, tension force, spring force and resisting force. These forces make objects change their motion or movement , the act of going from one place to another.
To create the shapes, stars are arranged on a piece of cardboard in the desired configuration. If the stars are placed in a smiley face pattern on the cardboard, for example, they will explode into a smiley face in the sky. In fact, you may see several smiley faces in the sky at one time.
Your Welcome
Answer:
A solenoid is a device comprised of a coil of wire, the housing and a moveable plunger (armature). When an electrical current is introduced, a magnetic field forms around the coil which draws the plunger in. More simply, a solenoid converts electrical energy into mechanical work.
Explanation:
The coil is made of many turns of tightly wound copper wire. When an electrical current flows through this wire, a strong magnetic field/flux is created.
The housing, usually made of iron or steel, surrounds the coil concentrating the magnetic field generated by the coil.
The plunger is attracted to the stop through the concentration of the magnetic field providing the mechanical force to do work.
yes she is very safe inside
Answer:
Recall the Diffraction grating formula for constructive interference of a light
y = nDλ/w Eqn 1
Where;
w = width of slit = 1/15000in =6.67x10⁻⁵in =
6.67x10⁻⁵ x 0.0254m = 1.69x10⁻⁶m
D = distance to screen
λ = wavelength of light
n = order number = 1
Given
y1 = ? from 1st order max to the central
D = 2.66 m
λ = 633 x 10-9 m
and n = 1
y₁ = 0.994m
Distance (m) from the central maximum (n = 0) is the first-order maximum (n = 1) = 0.994m
Q b. How far (m) from the central maximum (m = 0) is the second-order maximum (m = 2) observed?
w = width of slit = 1/15000in =6.67x10⁻⁵in =
6.67x10⁻⁵ x 0.0254m = 1.69x10⁻⁶m
D = distance to screen
λ = wavelength of light
n = order number = 1
Given
y1 = ? from 1st order max to the central
D = 2.66 m
λ = 633 x 10⁻⁹ m
and n = 2
y₂ = 0.994m
Distance (m) from the central maximum (n = 0) is the first-order maximum (n = 2) =1.99m