Answer:
a. 5 × 10¹⁹ protons b. 2.05 × 10⁷ °C
Explanation:
Here is the complete question
A beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is 0.42 A. (a) How many protons strike the target in 19 seconds? (b) Each proton has a kinetic energy of 6.0 x 10-12 J. Suppose the target is a 17-gram block of metal whose specific heat capacity is 860 J/(kg Co), and all the kinetic energy of the protons goes into heating it up. What is the change in temperature of the block at the end of 19 s?
Solution
a.
i = Q/t = ne/t
n = it/e where i = current = 0.42 A, n = number of protons, e = proton charge = 1.602 × 10⁻¹⁹ C and t = time = 19 s
So n = 0.42 A × 19 s/1.602 × 10⁻¹⁹ C
= 4.98 × 10¹⁹ protons
≅ 5 × 10¹⁹ protons
b
The total kinetic energy of the protons = heat change of target
total kinetic energy of the protons = n × kinetic energy per proton
= 5 × 10¹⁹ protons × 6.0 × 10⁻¹² J per proton
= 30 × 10⁷ J
heat change of target = Q = mcΔT ⇒ ΔT = Q/mc where m = mass of block = 17 g = 0.017 kg and c = specific heat capacity = 860 J/(kg °C)
ΔT = Q/mc = 30 × 10⁷ J/0.017 kg × 860 J/(kg °C)
= 30 × 10⁷/14.62
= 2.05 × 10⁷ °C
Answer:
By a factor of 3
Explanation:
In the photon energy formula , frequency and the energy content have a direct relationship. This means anything that is done to one of the parameters is the same that will be done to the other to have a balance.
In this equation: Energy=plank’s constant * frequency.
Energy is directly proportional to frequency.
Working...
length of wire L = 1.5 m
current I = 7 A
potential difference V = 68 Volt
According to Ohm's Law
V = IR
R = V/I
R = 68/7
R = 9.7 Ω
Initial speed of the car (u) = 15 m/s
Final speed of the car (v) = 0 m/s (Car comes to a complete stop after driver applies the brake)
Distance travelled by the car before it comes to halt (s) = 63 m
By using equation of motion, we get:

Acceleration of the car (a) = -1.78 m/s²
Magnitude of the car's acceleration (|a|) = 1.78 m/s²
Answer:
lol imposter winsllllllllllllll