Answer:
<em>likely to decrease downstream in arid regions and increase downstream in temperate regions</em>
<em></em>
Explanation:
Arid regions are is a region with a severe lack of water, usually to the extent that affect the organisms living in the region. Arid regions are characterized by a very low depth of rainfall per year. Temperate region on the other hand experience more distinct seasonal change and wider temperature change. Temperate regions get a fairly large amount of rainfall per year.
In arid regions, the soil is very dry, and the rate of infiltration and percolation is high relative to the amount of rainfall available. The effect is that more water is infiltrated into the soil as you move downstream, leading to a decrease in the discharge of a stream as you move downstream. Most temperate region have soils that are usually saturated in the peak of the rainfall season, leading to a greater stream discharge as you move downstream.
Energy from the gravitational potential store in converted to kinetic energy. Air friction acts against the object, dissipating some energy as heat or sound. The object will continuously accelerate until the acceleration is equal to the air friction acting against it. This is when it reaches terminal velocity
Answer:
460 g
Explanation:
Heat lost by the warm water = heat gained by the cold water
-mCΔT = mCΔT
-m (4.184 J/g/K) (37°C − 85°C) = (1000 g) (4.184 J/g/K) (37°C − 15°C)
-m (37°C − 85°C) = (1000 g) (37°C − 15°C)
-m (-48°C) = (1000 g) (22°C)
m = 458 g
Rounded to two significant figures, you need a mass of 460 g of water.
Answer:
The frequency of the sound wave is 800Hz
The speed of sound in a is about 340m/s.
Velocity = frequency x wavelength
making wavelength the subject formula
wavelength = Velocity/frequency.
wavelength = 340/800
wavelength = 0.425m.
Answer:
10 N
Explanation:
F = ma = m(Δv/t) = 5.0(10.0 - 0)/5.0 = 10 N