The type of energy used is kinetic energy. Kinetic energy is the energy of motion.
Answer: The Lattice energy is the energy required to separate an ionic solid into its component gaseous ions <em>or</em>
It is the energy released when gaseous ions combine to form an ionic solid.
Explanation:
The lattice energy depends on the ionization energies and electron affinities of atoms involved in the formation of the compound. The ionization energies and electron affinities also depends on the ionic radius and charges of the ions involved. As the ionic radius for cations <em>increases</em> down the groups, ionization energy <em>decreases</em>, whereas, as ionic radii <em>decreases</em> across the periods , ionization energy <em>increases</em>. The trend observed for anions is that as ionic radii <em>increase </em>down the groups, electron affinity <em>decreases. </em>Across the period, as ionic radii <em>increases</em> electron affinity <em>increases</em>. Also, as the charge on the ion <em>increases,</em> it leads to an <em>increase</em> in energy requirement/content.
Therefore, for compounds formed from cations and anions in the same period, the highest charged cation and anion will have the highest lattice energy. For example, among the following compounds: Al2O3 (aluminium oxide), AlCl3 (aluminium chloride), MgO, MgCl2 (magnesium chloride), NaCl, Na2O (sodium oxide); Al2O3(aluminium oxide) will have the highest lattice energy, thus will be hardest to break apart because its ions have the highest charge.
1) As for its chemical composition, coal is a mixture of high-molecular-weight polycyclic aromatic compounds, such as benzene C6H6, toluene C6H5CH3, xylene C6H4(CH3)2, naphthalene C10H8, anthracene C14H10, pyrene C16H10 and their derivatives with high mass fraction of carbon, as well as of water and volatile substances.
2) The coal asphaltenes have a relatively narrow MWD (full width ≈ 150 amu) with an average molecular weight of ≈340 amu. The petroleum asphaltenes display a broader MWD (full width ≈ 300 amu) and are heavier on average (≈680 amu).
~ I hope this helped, and I would appreciate Brainliest. ♡ ~ ( I request this to all the lengthy answers I give ! )
The molar mass of magnesium hydroxide is 58.3197 g/mol.