Huh ?!?!?? What does that mean? Can I have brainliest I need one more for my next stage/level
Answer:
is changing in direction, but constant in magnitude
Explanation:
This question is a bit tricky since the velocity of the satellite is changing, but the speed is constant.
Speed is simply a measure of how fast you are going. It doesn't matter where you're going, just how quickly.
Velocity, on the other hand, does care about which direction you're going. For example, it could be then when you travel right, your velocity is positive, and when you travel left, your velocity is negative. This is the similar for a 2D shape like a circular orbit
Since we know velocity is changing, there must be acceleration which changes that velocity (since acceleration <em>is</em><em> </em>the change in velocity: going from 0 to 60 mph, for example)
Thus, with a non-zero net acceleration, we know that there must be a force that is changing in direction, but constant in magnitude (since the orbit is a circle, and always attracted to the center of the Earth at equal distance).
The bike is maintaining "constant velocity". He's moving at 15 m/s when we see him for the first time, 15 m/s later that day, and 15 m/s next week.
The car starts from zero, and goes 4.0 m/s FASTER each second. After one second, it's going 4.0 m/s. After 2 seconds, it's going 8 m/s. And after 3 seconds, it's going 12 m/s.
This is the point at which the question wants us to compare them ... 3 seconds. The bike is moving at 15 m/s and the car has sped up to 12 m/s. <em>The bike is moving faster than the car.</em>
If we hung around and kept watching for another second, the car would then be moving at 16 m/s, and would be moving faster than the bike. But we lost interest after answering the question, and we left at 3 seconds.
Sound waves need to travel through a medium such as solids, liquids and gases. The sound waves move through each of these mediums by vibrating the molecules in the matter. The molecules in solids are packed very tightly. Liquids are not packed as tightly. And gases are very loosely packed. This enables sound to travel much faster through a solid than a gas. Sound travels about four times faster and farther in water than it does in air.
Light waves do not require a medium to travel. This is how light can travel through space and we can see stars. Light waves travel at a much higher velocity as compared to sound waves. The velocity of light waves (through a vacuum) is 3 xx 10^8 m/s. In comparison, the velocity of sound waves (in air) is about 343 m/s. Different frequencies of light waves give rise to different colors. On the other hand, different frequencies of sound waves result in different pitches. Light waves and sound waves have very different frequencies from each other. Sound waves have low frequencies (20 to 20,000 Hz) as compared to light waves (~ 10^14 Hz).
Answer:
X-rays are most often used to examine bones and teeth.
Hope this helps!