Answer:
q₁ = + 1.25 nC
Explanation:
Theory of electrical forces
Because the particle q₃ is close to two other electrically charged particles, it will experience two electrical forces and the solution of the problem is of a vector nature.
Known data
q₃=5 nC
q₂=- 3 nC
d₁₃= 2 cm
d₂₃ = 4 cm
Graphic attached
The directions of the individual forces exerted by q1 and q₂ on q₃ are shown in the attached figure.
For the net force on q3 to be zero F₁₃ and F₂₃ must have the same magnitude and opposite direction, So, the charge q₁ must be positive(q₁+).
The force (F₁₃) of q₁ on q₃ is repulsive because the charges have equal signs ,then. F₁₃ is directed to the left (-x).
The force (F₂₃) of q₂ on q₃ is attractive because the charges have opposite signs. F₂₃ is directed to the right (+x)
Calculation of q1
F₁₃ = F₂₃

We divide by (k * q3) on both sides of the equation



q₁ = + 1.25 nC
Answer:
1, 2 and 3
Explanation:
The most dense substance will settle at the bottom of the cup
In a stronger gravitational field a given mass will have a larger weight.
Distance = speed x time
distance = 116 x 10
distance = 1160 m
The energy used by the light bulb in half an hour is 180000 J and the amount of thermal energy generated is 158400 J.
What is Energy?
Energy is the ability or the capacity to do work.
To calculate the energy of the light bulb we use the formula below
Formula:
- E = Pt.......... Equation 1
Where:
- E = Energy used by the bulb in a half-hour
- P = Power of the bulb
- t = Time
Given:
- P = 100 W
- t = 1/2 hour = 30 minutes = (30×60) = 1800 seconds
Substitute these values into equation 1
- E = (100×1800)
- E = 180000 J
- If the light converts 12% of electric energy to light energy, then 88% of the energy is used to generate thermal energy
Therefore,
- Thermal energy = (180000×88/100) = 158400 J
Hence, the energy used by the light bulb in half an hour is 180000 J and the amount of thermal energy generated is 158400 J.
Learn more about energy here: brainly.com/question/21927255
#SPJ1