Chemical changes only happen when the object changes form. Color is a physical property because you're not changing the object that you have, compressibility is also a physical property because you still have the same substance before and sfter, malleability again is another physical. Heat of combustion is physical, when you burn things it changes the substance. :)
Answer:
(c) The retention time would be higher (d) The retention time would be lower.
Explanation:
For the polar solutes which were separated using the hydrophilic interaction chromatography (HILIC) with a strongly polar bonded phase, the retention time would be higher if eluent were changed from 80 vol% to 90 vol% acetonitrile in water.
However, for the polar solutes which were separated using the normal-phase chromatography on bare silica with methyl t=butyl ether and 2-propanol solvent, the retention time would be lower if the eluent were changed from 40 vol% to 60 vol% 2-propanol.
<span>The rate of reaction may be expressed as a unit of quantity divided by a unit of time. The only expression that has a quantity divided by time is the first one mL / s (i.e. milliliter per second), so the answer is the first option, mL/s.</span><span />
Answer:
5.79 × 10^23 Oxygen atoms
Explanation:
Number of Oxygen atom in the compound = 4×3 = 12
Molar mass of Al2(SO4)3 = 342 g/mol.
No of mole = mass/molar mass = 2.74/342 = 8.01×10^-03 mole
2.74g of Al2(SO4)3 × 1 mole of Al2 (SO4)3 / 342g of Al2 (SO4)3 * 12 mole of Oxygen/ 1mole of Al(SO4)3 * 6.02×10^23 Oxygen atom/ 1 mole of Oxygen
= 5.79×10^23 Oxygen atoms
Answer:
148 g
Explanation:
Step 1: Write the balanced equation for the decomposition of sodium azide
2 NaN₃ ⇒ 2 Na + 3 N₂
Step 2: Calculate the moles corresponding to 95.8 g of N₂
The molar mass of N₂ is 28.01 g/mol.
95.8 g × 1 mol/28.01 g = 3.42 mol
Step 3: Calculate the moles of NaN₃ needed to form 3.42 moles of N₂
The molar ratio of NaN₃ to N₂ is 2:3. The moles of NaN₃ needed are 2/3 × 3.42 mol = 2.28 mol.
Step 4: Calculate the mass corresponding to 2.28 moles of NaN₃
The molar mass of NaN₃ is 65.01 g/mol.
2.28 mol × 65.01 g/mol = 148 g