Answer:
4. The equilibrium will shift to favor formation of NO2(g)
Explanation:
According to La Chatalier's Principle which states that when an equilibrium system undergoes changes either in temperature, volume or concentration; there will be in a change in the system in order to reach equilibrium.
From the above equation,
N2O4(g) ⇀↽ 2 NO2(g)
From the above reaction, there are 2 moles of gaseous product on the left and 1 mole of gaseous reactant.
Therefore, there are more moles of gases in the left hand side than the right hand side.
Because a decrease in volume favors the direction that produces fewer moles, an increase in volume will therefore shift this system towards the side with more moles of gases that is, more products are formed hence, this system will shift to right and produce more moles of products i.e more NO2(g) formed.
Poder = (resistencia) x (corrente)²
Poder = (10 ohms) x (5 A)²
<em>Poder = 250 watts </em>(250 Joule por segundo)
2 horas = 7,200 segundos
Energia = (250 joule/seg) x (7,200 seg)
<em>Energia = 1,800,000 Joules</em>
(1) You must find the point of equilibrium between the two forces,
<span>G * <span><span><span>MT</span><span>ms / </span></span><span>(R−x)^2 </span></span>= G * <span><span><span>ML</span><span>ms / </span></span><span>x^2
MT / (R-x)^2 = ML / x^2
So,
x = R * sqrt(ML * MT) - ML / (MT - ML)
R = is the distance between Earth and Moon.
</span></span></span>The result should be,
x = 3.83 * 10^7m
from the center of the Moon, and
R - x = 3.46*10^8 m
from the center of the Earth.
(2) As the distance from the center of the Earth is the number we found before,
d = R - x = 3.46*10^8m
The acceleration at this point is
g = G * MT / d^2
g = 3.33*10^-3 m/s^2
A.the composition of the inner and outer planets, current observations of star formation, and the motion of the solar system I hope this helps
Pure water.
A salt solution contains impurities whereas pure water will not contain any impurities.
Impurities increase the boiling point (freezing point) of a substance.
Thus, I would expect the pure water solution to freeze faster than the salt solution.