Answer: A.
As a diver rises, the pressure on their body decreases which allows the volume of the gas to decrease.
Explanation:
The problem is that a diver, experiences an increased pressure of water compresses nitrogen and more of it dissolves into the body. Just as there is a natural nitrogen saturation point at the surface, there are saturation points under water. Those depend on the depth, the type of body tissue involved, and also how long a diver is exposed to the extra pressure. The deeper a diver go, the more nitrogen the body absorbs.
The problem is getting rid of the nitrogen once you ascend again. As the pressure diminishes, nitrogen starts dissolving out of the tissues of the diver's body, a process called "off-gassing." That results in tiny nitrogen bubbles that then get carried to the lungs and breathed out. However, if there is too much nitrogen and/or it is released too quickly, small bubbles can combine to form larger bubbles, and those can do damage to the body, anything from minor discomforts all the way to major problems and even death.
Answer:
Winds are caused by differences in air pressure. Unequal heating of Earth’s surface creates areas of different pressure. Cooler areas have higher air pressure. Warmer areas have lower pressure. This causes air to move from high pressure to low pressure. This movement is the wind we feel.
plz mark me as brainliest.
-- The mass of the sun never increases.
-- It does decrease, but not nearly enough to have any noticeable
effect on the orbital motion of the Earth, or any other planet.
-- When Earth is closer to the sun, it moves faster in its orbit.
-- When Earth is farther from the sun, it moves slower in its orbit.
-- The result is that the line from the sun to the Earth always covers
the same amount of area in the same length of time.
-- Johannes Kepler noticed this, and it's his Second Law of planetary motion.
-- Newton showed that if his equations for gravity and motion are correct,
then planets MUST behave this way.
To solve this problem we will apply the work theorem which is expressed as the force applied to displace a body. Considering that body strength is equivalent to weight, we will make the following considerations



Work done to upward the object



Horizontal Force applied while carrying 10m,


Height descended in setting the child down




For full time, assuming that the total value of work is always expressed in terms of its symbol, it would be zero, since at first it performs the same work that is later complemented in a negative way.