Answer:
38.8 m
Explanation:
h = -(21 + 1.75) = - 22.75 m
g = - 9.8 m /s^2
Ux = 14.004 m/s
Uy = + 5.376 m/s
Let the ball hits the ground in time t and at a distance d from the base of hill.
Use second equation of motion
h = Uyt + 0.5 at^2
- 22.75 = 5.376 t - 0.5 x 9.8 t^2
4.9 t^2 - 5.376 t - 22.75 = 0

By solving
t = 2.77 second
So, horizontal distance
d = Ux t
d = 14.004 x 2.77 = 38.8 m
Answer:
2.4 m/s". 1
Explanation:
A jet with mass m = 8 x 10* kg jet accelerates down the runway for takeoff at 2.4 m/s". 1
Answer:
When object is placed between the focus (F) and pole (P) of a concave mirror, magnified and erect image of the object is formed on the back of the mirror.
When object is placed between the centre of curvature and the principal focus of a concave mirror, magnified and inverted image is formed in front of the mirror.
Explanation:
Acids are danger so stay away
Answer:
Explanation:
The "traditional" form of Coulomb's law, explicitly the force between two point charges. To establish a similar relationship, you can use the integral form for a continuous charge distribution and calculate the field strength at a given point.
In the case of moving charges, we are in presence of a current, which generates magnetic effects that in turn exert force on moving charges, therefore, no longer can consider only the electrostatic force.