The best explanation is the <em>difference</em> between the inside <em>temperature</em> and the outside temperature.
If the player doesn't change his emboucher (muscles and position of his lips), then the pitch produced by the instrument depends only on the physical dimensions of its plumbing, and the speed of sound in the tube.
BOTH of those things change slightly when the temperature changes.
Answer:
-6.44 m/s²
Explanation:
Given:
Δx = 60 m
v₀ = 27.8 m/s
v = 0 m/s
Find: a
v² = v₀² + 2aΔx
(0 m/s)² = (27.8 m/s)² + 2a (60 m)
a = -6.44 m/s²
To solve this problem it is necessary to apply the rules and concepts related to logarithmic operations.
From the definition of logarithm we know that,

In this way for the given example we have that a logarithm with base 10 expressed in the problem can be represented as,

We can express this also as,

By properties of the logarithms we know that the logarithm of a power of a number is equal to the product between the exponent of the power and the logarithm of the number.
So this can be expressed as

Since the definition of the base logarithm 10 of 10 is equal to 1 then

The value of the given logarithm is equal to 6
I think your answer would be (D) microscope with a video camera
Hope i helped!
The formula for speed is s = d/t, where s is speed, d is distance, and t is time. The formula can be applied to all objects, including cars, to find their speed.