Answer: Thermal Energy is energy resulting from the motion of particles; It is a form of kinetic energy and is transferred as heat; Thermal Energy Transfer can occur by three methods: Conduction; Convection; Radiation; Conduction. Conduction is the transfer of thermal energy through direct contact between . particles of a substance.
Explanation:
<span>a)
Capacitance = k x ε° x area / separation
ε° = 8.854 10^-12 F/ m
k = 2.4max
average k = 0.78 / 1.27 * 2.4 +(1.27- 0.78) / 1.27 * 1 = 1.474 + 0.386 = 1.86
(61.4 % separation k = 2.4 --- 38.6 % k = 1 air --- average k = 0.614 * 2.34 + 0.386 * 1 = 1.86
area = 145 cm2 = 0.0145 m2
separation = 1.27 cm 0.0127 m
C = 1.86 * 8.854 10^-12 * 0.0145 / 0.0127 = 18.8 pF
b) Q = C * V --- 18.8 * 83 = 1560.4 pC = 1.5604 nC
c) E = V / d = 83 / 0.0127 = 6535.4 V/m </span>
Answer:
sofa
Explanation:
because the sofa is heavy and the amount of friction is high due to the amount of opposite friction is pushing it back
Answer:
its direction is changing
Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC