This heats up when an electric current passes through it, and produces light as a result. The resistance of a lamp increases as the temperature of its filament increases. The current flowing through a filament lamp is not directly proportional to the voltage across it.
Answer:

Explanation:
The energy, E, from a capacitor, with capacitance, C, and voltage V is:


If we increase the Voltage, the Energy increase also:


The voltage difference:


Answer:
c = 1 / √(ε₀*μ₀)
Explanation:
The speed of the electromagnetic wave in free space is given in terms of the permeability and the permittivity of free space by
c = 1 / √(ε₀*μ₀)
where the permeability of free space (μ₀) is a physical constant used often in electromagnetism and ε₀ is the permittivity of free space (a physical constant).
To be honest, the picture is so far above that I can't see it at all.
But reading the information in the question's statement, I'd say
the blank should be filled in so that it says:
<span> The chemical energy in the battery is used to light up the light bulb
on the other end. Chemical energy in the battery is transformed into
electrical energy which runs through the circuit wire. (A)</span>
Answer:
k_max = 31.82 w/mk
k_min = 17.70 w/mk
Explanation:
a) the maximum thermal conductivity is given as

where k_m is thermal conductvitiy of metal
k_p is thermal conductvitiy of carbide
v_m = proportion of metal in the cement = 0.17
v_p = proportion of carbide in the cement = 0.83
= 66*0.17 + 28*0.83
k_max = 31.82 w/mk
b) the minimum thermal conductivity is given as

= \frac{28+66}{28*0.17 +66*0.83}
k_min = 17.70 w/mk