1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeka94
3 years ago
8

2. Two identical conducting spheres are placed with their centers 0.30 m apart. One is given a charge of 12 x 10-9 C and the oth

er is given a charge of -18 x 10-9 C. a. Find the electric force exerted on one sphere by the other. b. The spheres are connected by a conducting wire. After equilibrium has occurred, find the electric force between the two spheres.
Physics
1 answer:
Maru [420]3 years ago
7 0

Answer:

A. -2.16 * 10^(-5) N

B. 9 * 10^(-7) N

Explanation:

Parameters given:

Distance between their centres, r = 0.3 m

Charge in first sphere, Q1 = 12 * 10^(-9) C

Charge in second sphere, Q2 = -18 * 10^(-9) C

A. Electrostatic force exerted on one sphere by the other is:

F = (k * Q1 * Q2) / r²

F = (9 * 10^9 * 12 * 10^(-9) * -18 * 10^(-9)) / 0.3²

F = -2.16 * 10^(-5) N

B. When they are brought in contact by a wire and are then in equilibrium, it means they have the same final charge. That means if we add the charges of both spheres and divided by two, we'll have the final charge of each sphere:

Q1 + Q2 = 12 * 10^(-9) + (-18 * 10^(-9))

= - 6 * 10^(-9) C

Dividing by two, we have that each sphere has a charge of -3 * 10^(-9) C

Hence the electrostatic force between them is:

F = [9 * 10^9 * (-3 * 10^(-9)) * (-3 * 10^(-9)] / 0.3²

F = 9 * 10^(-7) N

You might be interested in
WHAT SHOULD I NAME MY DEAD RAT?
olga_2 [115]

Answer:

pablito

Explanation:

6 0
3 years ago
A 3.1 kg ball is dropped from the top of a 38 m tall building. What is the speed of the ball when it is halfway from the buildin
Archy [21]

Answer:

19.3m/s

Explanation:

Use third equation of motion

v^2-u^2=2gh

where v is the velocity at halfway, u is the initial velocity, g is gravity (9.81m/s^2) and h is the height at which you'd want to find the velocity

insert values to get answer

v^2-0^2=2(9.81m/s^2)(38/2)\\v^2=9.81m/s^2 *38\\v^2=372.78\\v=\sqrt[]{372.78} \\v=19.3m/s

4 0
3 years ago
Projectile's horizontal range on level ground is R=v20sin2θ/g. At what launch angle or angles will the projectile land at half o
seraphim [82]

Answer:

\theta = 15^o \: or\: 75^o

Explanation:

As we know that the formula of range is given as

R = \frac{v^2sin2\theta}{g}

now we know that

maximum value of the range of the projectile is given as

R_{max} = \frac{v^2}{g}

now we need to find such angles for which the range is half the maximum value

so we will have

\frac{R}{2} = \frac{v^2}{2g} = \frac{v^2sin(2\theta)}{g}

sin(2\theta) = \frac{1}{2}

2\theta = 30 or 150

\theta = 15^o \: or\: 75^o

7 0
3 years ago
What velocity does a 2kg mass have when its kinetic energy is 16 J
alexandr402 [8]
We can use the equation for kinetic energy, K=1/2mv².
Your given variables are already in the correct units, so we can just plug in the variables and solve for v. 

K = 1/2mv²
16 = 1/2(2)v²
16 = (1)v²
√16 = v
v = 4 m/s

Therefore, the velocity of a 2 kg mass with 16 J of kinetic energy is 4 m/s.
Hope this is helpful!
7 0
3 years ago
In the sport of parasailing, a person is attached to a rope being pulled by a boat while hanging from a parachute-like sail. A r
IrinaK [193]

Answer:

570 N

Explanation:

Draw a free body diagram on the rider.  There are three forces: tension force 15° below the horizontal, drag force 30° above the horizontal, and weight downwards.

The rider is moving at constant speed, so acceleration is 0.

Sum of the forces in the x direction:

∑F = ma

F cos 30° - T cos 15° = 0

F = T cos 15° / cos 30°

Sum of the forces in the y direction:

∑F = ma

F sin 30° - W - T sin 15° = 0

W = F sin 30° - T sin 15°

Substituting:

W = (T cos 15° / cos 30°) sin 30° - T sin 15°

W = T cos 15° tan 30° - T sin 15°

W = T (cos 15° tan 30° - sin 15°)

Given T = 1900 N:

W = 1900 (cos 15° tan 30° - sin 15°)

W = 570 N

The rider weighs 570 N (which is about the same as 130 lb).

6 0
3 years ago
Other questions:
  • A rock rolls down a steep hill. Its intial velocity is 1 meter per second. By the time it reaches the bottom of the hill 30 seco
    9·1 answer
  • The aqueduct passes under Johnson Road in Lancaster through a siphon. The maximum capacity of the aqueduct is 350 m3/s. The heig
    13·2 answers
  • When you jump off the earth, your momentum changes, but the Earth does not move. 1)If momentum is always conserved, why do we no
    8·1 answer
  • What is the momentum of a bird with a mass of 1 kg and a velocity of 5m/s
    11·1 answer
  • For using the law of reflection and Snell's law for refraction, the angles are measured Group of answer choices between the surf
    14·1 answer
  • A boy picks up a bowling ball. Which of the following choices correctly describes the interaction between the boy and the bowlin
    14·2 answers
  • Rahul runs a distance of 12
    14·1 answer
  • Lifting a stone block 146m to the top of the Great Pyramid required 146,000 J of work. How much work was done to lift the block
    10·1 answer
  • Which of the following is NOT a characteristic of noble gases? *
    7·1 answer
  • A uniform electric field exists in the region between two oppositely charged plane parallel plates. a proton is released from re
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!