minecraft or cod
Explanation:
well those are the only games I play but the one I enjoy the most is cod
Answer:
At a given temperature, a system of particles can be considered as point masses (m) each moving at a certain translational velocity (v). The motion of these particles can be defined in terms of their average translational kinetic energy which is responsible for the heat transfer during molecular collisions and therefore the temperature of the system.
The kinetic temperature T is given in terms of the average translational kinetic energy as:
T = 2/3k(Kinetic energy)
T = 2/3k(1/2*m*v²)
where K = Boltzmann constant
Ans: C) Average translational kinetic energy
500 mg in g :
1 g ----------- 1000 mg
? -------------- 500 mg
500 x 1 / 1000 => 0.5 g
total mass:
50 g + 0.5 g + 0.1 g => 50.6 g
hope this helps!
We know that:
number of moles (n) = mass / molar mass
Now, from the general law of gases:
PV = nRT
where:
P is the pressure = 500 torr = 0.65 atm
V is the volume
n is the number of moles
R is the gas constant = 0.082
T is the temperature = 300 k
We will just rearrange this equation as follows:
P = nRT / V
Then we will substitute n with its equivalent equation mentioned at the beginning:
P = (mass x R x T) / (volume x molar mass) ......> equation I
Now, we know that:
density = mass / volume
We will substitute (mass/volume) in equation I with density as follows:
P = (density x R x T) / molar mass
Rearrange this equation to get the mass as follows:
molar mass = <span>dRT/P = (0.216 x 0.082 x 300) / 0.65 = 8.4738 grams
</span>
From the periodic table:
molecular mass of hydrogen = 1 grams
molecular mass of nitrogen = 14 grams
Therefore:
molar mass of hydrogen = 2 x 1 = 2 grams
molar mass of nitrogen = 2 x 14 = 28 grams
We can assume that the number of moles of of each element is y.
We can thus build up the following equation:
2y + 28y = 8.4738
30y = 8.4738
y = 0.28246
Therefore:
mole fraction of hydrogen = 2 x 0.28246 = 0.56492
mole fraction of nitrogen = 28 x 0.28246 = 7.90888
Answer:
0.04 L
Explanation:
The following data were obtained from the question:
Concentration of stock solution (C1) = 18M
Volume of stock solution needed (V1) =?
Concentration of diluted solution (C2) = 1.5M
Volume of diluted solution (V2) = 0.5L
The volume of the stock solution needed can be obtain by using the dilution formula.
This is illustrated below:
C1V1 = C2V2
18 x V1 = 1.5 x 0.5
Divide both side by 18
V1 = (1.5 x 0.5)/18
V1 = 0.04L
Therefore, the volume of the stock solution needed is 0.04L.