Answer:
290.82g
Explanation:
The equation for the reaction is given below:
2Al + 3H2SO4 -> Al2(SO4)3 + 3H2 now, let us obtain the masses of H2SO4 and Al2(SO4)3 from the balanced equation. This is illustrated below:
Molar Mass of H2SO4 = (2x1) + 32 + (16x4) = 2 + 32 +64 = 98g/mol
Mass of H2SO4 from the balanced equation = 3 x 98 = 294g
Molar Mass of Al2(SO4)3 = (2x27) + 3[32 + (16x4)]
= 54 + 3[32 + 64]
= 54 + 3[96] = 54 + 288 = 342g
Now, we can obtain the mass of aluminium sulphate formed by doing the following:
From the equation above:
294g of H2SO4 produced 342g of Al2(SO4)3.
Therefore, 250g of H2SO4 will produce = (250 x 342)/294 = 290.82g of Al(SO4)3
Therefore, 290.82g of aluminium sulphate (Al(SO4)3) is formed.
Answer:
The order of some common metals in the electromotive series, starting with the most easily oxidized, is: lithium, potassium, calcium, sodium, magnesium, aluminum, zinc, chromium, iron, cobalt, nickel, lead, hydrogen, copper, mercury, silver, platinum, and gold.
Explanation:
There are many compounds which contain triple bonds between two atoms. Few of the are as follow,
Nitrogen Molecule:
N₂ or :N≡N:
Cyanide Ion:
CN⁻ or [:C≡N:]⁻
Alkynes:
R-C≡C-R
Carbon Monoxide:
CO or :C≡O:
Among given compounds Alkynes belong to a class of unsaturated hydrocarbons. The carbon atom in alkyne is sp hybridized. These unsaturated hydrocarbons have their own characteristic chemical properties.
Answer:
11.99
% ≅ 12.0%.
Explanation:
∵ mass % = [mass of solute/mass of solution] x 100.
mass of solute (CaCl₂) = 8.87 g & mass of solution = 8.87 g + 65.1 g = 73.97 g.
<em>∴ mass % of (CaCl₂) = [mass of solute/mass of solution] x 100 </em>= (
8.87 g/ 73.97 g) x 100 = <em>11.99
% ≅ 12.0%.</em>