1/4 mol = 0.25 mol
6 months = 0.5 year
rate = 0,25 mol / 0.5 year = 0.5 mol/year or approx 0.042 mol/month
Since the substance absorbs heat, it is expected that the temperature will rise. The formula for the internal energy of a substance is given by the equation:
ΔU = mCpΔT
where:
ΔU = internal energy
m = mass of substance
Cp = specific heat capacity of substance
ΔT = change in temperature
ΔU = 2722 Joules = 16.2 grams (9.22 J/g-°C) (Tf - 26°C)
This gives a final temperature of Tf = 44.22 °C
I think you must do dot and cross diagrams but im not sure at all
Answer : The equilibrium concentration of
will be, (C) 
Explanation : Given,
Equilibrium constant = 14.5
Concentration of
at equilibrium = 0.15 M
Concentration of
at equilibrium = 0.36 M
The balanced equilibrium reaction is,

The expression of equilibrium constant for the reaction will be:
![K_c=\frac{[CH_3OH]}{[CO][H_2]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%5BCO%5D%5BH_2%5D%5E2%7D)
Now put all the values in this expression, we get:
![14.5=\frac{[CH_3OH]}{(0.15)\times (0.36)^2}](https://tex.z-dn.net/?f=14.5%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%280.15%29%5Ctimes%20%280.36%29%5E2%7D)
![[CH_3OH]=2.82\times 10^{-1}M](https://tex.z-dn.net/?f=%5BCH_3OH%5D%3D2.82%5Ctimes%2010%5E%7B-1%7DM)
Therefore, the equilibrium concentration of
will be, (C) 