1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lozanna [386]
3 years ago
9

Question 12…..plz help

Physics
1 answer:
elena-14-01-66 [18.8K]3 years ago
5 0

Answer:

1 I am not sure but I tried

You might be interested in
f the magnitude of the acceleration of a propeller blade's tip exceeds a certain value amaxamax, the blade tip will fracture. If
Luden [163]

Answer:

The angular velocity is   w= \sqrt[4]{\frac{a_{max}^2}{r^2}  - \alpha ^2}      

Explanation:

Generally the acceleration experienced by the propeller blade's is broken down into

          The Radial acceleration which is mathematically represented as

                              a_r = \frac{v^2}{r}  = w^2r

And the Tangential  acceleration which is mathematically represented as

                                a_r = \alpha r

  The net acceleration is evaluated as

                      a = \sqrt{a_r^2 + a_t^2}

       

Now since angular speed varies directly with angular acceleration so when acceleration is maximum the angular velocity is maximum also and this point if the propeller blade's tip exceeds it the blade would fracture

                 

So at maximum angular acceleration we a have

             a_{max} = \sqrt{a_r^2 + a_t^2}

                     a_{max}^2 = a_r^2 + a_t^2

                    a_{max}^2 = (w^2r)^2 + (\alpha r)^2

                 a_{max}^2 =  r^2 w^4 + r^2 \alpha ^2

                  a_{max}^2 = r^2 (w^4 + \alpha^2 )

                w^4 +\alpha ^2 = \frac{a_{max}^2}{r^2}

                         w^4 = \frac{a_{max}^2}{r^2}  - \alpha ^2

                         w= \sqrt[4]{\frac{a_{max}^2}{r^2}  - \alpha ^2}        

                     

3 0
3 years ago
A submarine is stranded on the bottom of the ocean with its hatch 21.0 m below the surface. calculate the force (in n) needed to
Tanzania [10]

Answer:

28,400 N

Explanation:

Let's start by calculating the pressure that acts on the upper surface of the hatch. It is given by the sum of the atmospheric pressure and the pressure due to the columb of water, which is given by Stevin's law:

p_{top} = p_{atm} + \rho g h=1.013\cdot 10^5 Pa + (1000 kg/m^3)(9.8 m/s^2)(21.0 m)=3.071 \cdot 10^5 Pa

On the lower part of the hatch, there is a pressure equal to

p_{bot}=p_{atm}=1.013\cdot 10^5 Pa

So, the net pressure acting on the hatch is

p=p_{top}-p_{bot}=3.071 \cdot 10^5 Pa - 1.013\cdot 10^5 Pa=2.058 \cdot 10^5 Pa

which acts from above.

The area of the hatch is given by:

A=\pi r^2 = \pi (\frac{0.420 m}{2})^2=0.138 m^2

So, the force needed to open the hatch from the inside is equal to the pressure multiplied by the area of the hatch:

F=pA=(2.058\cdot 10^5 Pa)(0.138 m^2)=28,400 N

8 0
4 years ago
Applying the Law of Conservation of Energy. If a car was released down the track from a height what happens to the potential ene
erastova [34]

Answer:

According to the law of conservation of energy, energy cannot be created or destroyed,  although it can be changed from one form to another.    KE + PE = constant. A simple example involves a stationary car at the top of a hill.  As the car coasts down the hill, it moves faster and so it’s kinetic energy increases and it’s potential energy decreases.  On the way back up the hill, the car converts kinetic energy to potential energy.  In the absence of friction, the car should end up at the same height as it started.

This law had to be combined with the law of conservation of mass when it was determined that mass can be inter-converted with energy.

One can also imagine the energy transformation in a pendulum.  When the ball is at the top of its swing, all of the pendulum’s energy is potential energy.   When the ball is at the bottom of its swing, all of the pendulum’s energy is kinetic energy.   The total energy of the ball stays the same but is continuously exchanged between kinetic and potential forms

4 0
3 years ago
Two electrons with a charge of magnitude 1.6×10-19 C in an atom are separated by 1.5×10-10 m, the typical size of an atom. What
vesna_86 [32]

Answer:

1.02\cdot 10^{-8} N, repulsive

Explanation:

The magnitude of the electric force between two charged particles is given by Coulomb's law:

F=k\frac{q_1 q_2}{r^2}

where:

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q_1, q_2 are the two charges of the two particles

r is the separation between the two charges

The force is:

- repulsive if the two charges have  same  sign

- Attractive if the two charges have opposite signs

In this problem, we have two electrons, so:

q_1=q_2=1.6\cdot 10^{-19}C is the magnitude of the two electrons

r=1.5\cdot 10^{-10} m is their separation

Substituting into the formula, we find the electric force between them:

F=(8.99\cdot 10^9)\frac{(1.6\cdot 10^{-19})^2}{(1.5\cdot 10^{-10})^2}=1.02\cdot 10^{-8} N

And the force is repulsive, since the two electrons have same sign charge.

4 0
3 years ago
1. In terms of momentum conservation, why does a cannon recoil when fired?
Liula [17]
Newtons law of motion for every action there’s an equal and opposite reaction.
6 0
3 years ago
Read 2 more answers
Other questions:
  • If the star Sirius emits 23 times more energy than the Sun, why does the Sun appear brighter in the sky?
    15·1 answer
  • The escape velocity of a rocket from the earth is 11kms^-1. Taking the acceleration due to gravity as 9.8ms^-2, calculate the ra
    6·1 answer
  • g A rod is 2.0 m long and lies along the x-axis, with one end at the origin. A force of 25 N is applied at the point x = 1.2 m,
    14·1 answer
  • In 2002, a gargantuan iceberg broke away from the Ross Ice Sheet in Antarctica. It was approximately a rectangle 218 km long, 25
    8·1 answer
  • Energy that flows from an object with a higher temperature to an object with a lower temperature is ?
    13·1 answer
  • Do you think the electron will feel a force towards the proton, or away from it due to the proton's electric field? Given that,
    8·1 answer
  • The potential difference between points A and B in an electric
    9·1 answer
  • Please answer and fast i am in a test
    11·2 answers
  • A 92-kg receiver running at 8 m/s catches a pass across the middle and is immediately brought to a stop during a collision with
    15·1 answer
  • A galaxy containing substantial amounts of dark matter will.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!