Answer:
The angular velocity is
Explanation:
Generally the acceleration experienced by the propeller blade's is broken down into
The Radial acceleration which is mathematically represented as

And the Tangential acceleration which is mathematically represented as

The net acceleration is evaluated as

Now since angular speed varies directly with angular acceleration so when acceleration is maximum the angular velocity is maximum also and this point if the propeller blade's tip exceeds it the blade would fracture
So at maximum angular acceleration we a have







Answer:
28,400 N
Explanation:
Let's start by calculating the pressure that acts on the upper surface of the hatch. It is given by the sum of the atmospheric pressure and the pressure due to the columb of water, which is given by Stevin's law:

On the lower part of the hatch, there is a pressure equal to

So, the net pressure acting on the hatch is

which acts from above.
The area of the hatch is given by:

So, the force needed to open the hatch from the inside is equal to the pressure multiplied by the area of the hatch:

Answer:
According to the law of conservation of energy, energy cannot be created or destroyed, although it can be changed from one form to another. KE + PE = constant. A simple example involves a stationary car at the top of a hill. As the car coasts down the hill, it moves faster and so it’s kinetic energy increases and it’s potential energy decreases. On the way back up the hill, the car converts kinetic energy to potential energy. In the absence of friction, the car should end up at the same height as it started.
This law had to be combined with the law of conservation of mass when it was determined that mass can be inter-converted with energy.
One can also imagine the energy transformation in a pendulum. When the ball is at the top of its swing, all of the pendulum’s energy is potential energy. When the ball is at the bottom of its swing, all of the pendulum’s energy is kinetic energy. The total energy of the ball stays the same but is continuously exchanged between kinetic and potential forms
Answer:
, repulsive
Explanation:
The magnitude of the electric force between two charged particles is given by Coulomb's law:
where:
is the Coulomb's constant
are the two charges of the two particles
r is the separation between the two charges
The force is:
- repulsive if the two charges have same sign
- Attractive if the two charges have opposite signs
In this problem, we have two electrons, so:
is the magnitude of the two electrons
is their separation
Substituting into the formula, we find the electric force between them:

And the force is repulsive, since the two electrons have same sign charge.
Newtons law of motion for every action there’s an equal and opposite reaction.