The mass of nitric acid required to make the given solution is 0.0627 g.
The given parameters:
- <em>Volume of the acid, V = 250 mL</em>
- <em>pH of the acid, = 2.4</em>
The hydrogen ion (H⁺) concentration of the nitric acid is calculated as follows;
The molarity of the nitric acid is calculated as follows;
The number of moles of the nitric acid is calculated as follows;
The molar mass of nitric acid is calculated as;
The mass of the nitric acid contained in the calculated number of moles is calculated as;
Thus, the mass of nitric acid required to make the given solution is 0.0627 g.
Learn more about molarity of acids here: brainly.com/question/13864682
This question comes with four answer choices:
<span>A. H2O + H2O ⇄ 2H2 + O2
B. H2O + H2O⇄ H2O2 + H2
C. H2O + H2O ⇄ 4H+ + 2O2-
D. H2O + H2O ⇄ H3O+ + OH-
Answer: option </span><span>D. H2O + H2O ⇄ H3O+ + OH-
(the +sign next to H3O is a superscript, as well as the - sing next to OH)
Explanation:
The self-ionization of water, or autodissociation, produces the two ions H3O(+) and OH(-). The presence of ions is what explain the electrical conductivity of pure water.
</span><span>In this, one molecule of H2O loses a proton (H+) (deprotonates) to become a hydroxide ion, OH−. Then, he <span>hydrogen ion, H+</span>, immediately protonates another water molecule to form hydronium, H3O+.
</span>
Answer:
Molar mass of MgCl2 is 95 g/mol
Mg = 24 g/mol and Cl = 35.5 ×2 = 71 g/mol
moles = mass given/ molar mass
= 2.7/95 = 0.028 mol
volume = 250/1000 = 0.25 dm3 (ml is the same as dm3)
molarity of MgCl2 = moles/volume
= 0.028/0.25
= 0.112 mol/dm3
The atom that would gain two electrons to fill its valence energy level is S(sulfur)
This is because s (sulfur) is in atomic number 16 with 2.8.6 of [Ne] 3s^2 2p^4 electronic configuration. This implies that sulfur has 6 valence electron and therefore it require two electron to fill its valence energy level and obtain 18 rule electrons.
Put it in a beaker. Use a smaller beaker filled half way with ice and water and place in the larger one. It should be about an inch or two above the mixture. Heat over a Bunsen burner and the naphthalene will deposit on the bottom of smaller beaker.
And in this way, nephthalene be separated from the mixture of KBR and sand.