To solve the question we will assume that the gas behaves like an ideal gas, that is to say, that there is no interaction between the molecules. Assuming ideal gas we can apply the following equation:

Where,
P is the pressure of the gas
V is the volume of the gas
n is the number of moles
R is a constant
T is the temperature
Now, we have two states, an initial state, and a final state. The conditions for each state will be.
Initial state (1)
P1=975Torr=1.28atm
V1=3.8L
T1=-18°C=255.15K
Final state(2), STP conditions
P2=1atm
T2=273.15K
V2=?
We will assume that the number of moles remains constant, so the nR term of the first equation will be constant. For each state, we will have:

Since nR is the same for both states, we can equate the equations and solve for V2:

We replace the known values:

At STP conditions the gas would occupy 5.2L. First option
Because they usually are weak.
(:
Answer: Reaction A: pi + glucose ⇒ glucose-6-phosphate + H2O ΔG = 13.8 kJ/mol
Reaction B: pi + frutose-6-phosphate ⇒fructose-1,6-biphosphate + H2O ΔG = 16.3kJ/mol
Explanation: ΔG is the representation of the change in Gibbs Free Energy and relates enthalpy and entropy in a single value, which is:
ΔG = ΔH - TΔS
where:
ΔH is enthalpy
T is temperature
ΔS is entropy (measure of the )
It can also predict the direction of the reaction with the conditions of temperature and pressure being constant.
When the change is positive, the reaction is non-spontaneous, which means the reaction needs external energy to occur. If the change is negative, it is spontaneous, i.e., happens without external help.
Analyzing the reaction, we see that reaction A and B have a positive ΔG, while reaction C is negative, so the reaction that are unfavorable or nonspontaneous are <u>reactions A and B</u>.
Answer:
Benzoic acid
Explanation:
The strength of an acid is principally a measure of its dissociative capabilities in aqueous solutions. While strong acids dissociate completely in solution, weak acids dissociates only partially.
The relative strength of an acid can be obtained from its pKa value. The pKa value is the negative logarithm of the concentration of the Ka value.
Stronger acids have a pKa value usually negative. This is a pointer to the fact that the lower the pKa value, the stronger the strength of the acid in question.
Relatively therefore, Benzoic acid is stronger than acetic acid because it has a lesser value for pKa
LiCO3-> LiO+ CO2
It is already balanced as there is one Li on each side, one C on each side and three Os on each side.