Answer:
Answer D : about 1067 meters
Explanation:
There are two steps to this problem:
1) First find the time it takes the plane to stop using the equation for the acceleration:

Where Vf is the final velocity of the plane (in our case: zero )
Vi is the initial velocity of the plane (in our case: 80 m/s)
is the acceleration (in our case -3 m/s^2 - notice negative value because the velocity is decreasing)

with units corresponding to seconds given the quantities involved in the calculation.
2) Second knowing the time it took the plane to stop, now use that time in the equation for the distance traveled under accelerated motion:

Where the answer results in units of meters given the quantities used in the calculation.
We round this to 1067 meters
Pressure and heat. I hope this helps
Answer:
Stars emit colors of many different wavelengths, but the wavelength of light where a star's emission is concentrated is related to the star's temperature - the hotter the star, the more blue it is; the cooler the star, the more red it is
Fist one is a cylinder
the second, i believe is a sphere
the third is a rectangular prism
and the last is the same as the first, a cylinder
Answer: Two celestial objects are in space: one with a mass of 8.22 x 109 kg and one with a mass of 1.38 x 108 kg. If they are separated by a distance of 1.43 km, then, the magnitude of the force of attraction (in newtons) between the objects will be 52.9kN
Explanation: To find the answer we need to know more about the Newton's law of gravitation.
<h3>What is Newton's law of gravitation?</h3>
- Gravitation is the force of attraction between any two bodies.
- Every body in the universe attracts every other body with a force.
- This force is directly proportional to the product of their masses and inversely proportional to the square of the distance between these two masses.
- Mathematically we can expressed it as,

<h3>How to solve the problem?</h3>
- Here, we have given with the data's,

- Thus, the force of attraction between these two bodies will be,

Thus, if two celestial objects are in space: one with a mass of 8.22 x 109 kg and one with a mass of 1.38 x 108 kg and, If they are separated by a distance of 1.43 km, then, the magnitude of the force of attraction (in newtons) between the objects will be 52.9kN.
Learn more about the Newton's law of gravitation here:
brainly.com/question/28045318
#SPJ4