Answer:
The heat absorbed by the sample of water is 3,294.9 J
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
The sensible heat of a body is the amount of heat received or transferred by a body when it undergoes a temperature variation (Δt) without there being a change of physical state (solid, liquid or gaseous). Its mathematical expression is:
Q = c * m * ΔT
Where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case:
- Q=?
- m= 45 g
- c= 4.184

- ΔT= Tfinal - Tinitial= 38.5 C - 21 C= 17.5 C
Replacing:
Q= 4.184
* 45 g* 17.5 C
Solving:
Q=3,294.9 J
<u><em>The heat absorbed by the sample of water is 3,294.9 J</em></u>
<u><em></em></u>
Alkenes on reacting with ozone results in the formation of ozonide which undergo reductive cleavage in presence of dimethyl sulfide to form carbonyl compounds (aldehyde or ketone). Whereas in presence of hydrogen peroxide it undergoes oxidative cleavage to form carboxylic acids or ketones.
Since, A alkene yields 4-heptanone only on treatment with ozone and DMS thus, it implies that both the chains on the side of the double-bond are similar the product is 4-heptanone that means the double bond is present between the chains at the 4th carbon. Therefore the structure of compound A is 4,5-dipropyloct-4-ene.
The reaction is as shown in the image.
The reaction of A with m-CPBA (meta-perchlorobenzoic acid) followed by aqueous acid
is shown in the image.
m-CPBA (meta-perchlorobenzoic acid) is a peracid and forms epoxides on reacting with alkenes.
One of the many awe-inspiring things about algae, Professor Greene explains, is that they can grow between ten and 100 times faster than land plants. In view of this speedy growth rate – combined with the fact they can thrive virtually anywhere in the right conditions – growing marine microalgae could provide a variety of solutions to some of the world’s most pressing problems.
Take, global warming. Algae sequesters CO2, as we have learned, but owing to the fact they grow faster than land plants, can cover wider areas and can be utilised in bioreactors, they can actually absorb CO2 more effectively than land plants. AI company Hypergiant Industries, for instance, say their algae bioreactor was 400 times more efficient at taking in CO2 than trees.
And it’s not just their nutritional credentials which could solve humanity’s looming food crisis, but how they are produced. Marine microalgae grow in seawater, which means they do not rely on arable land or freshwater, both of which are in limited supply. Professor Greene believes the use of these organisms could therefore release almost three million km2 of cropland for reforestation, and also conserve one fifth of global freshwater
Answer:
The Prandtl number for this example is 14,553.
Explanation:
The Prandlt number is defined as:

To compute the Prandlt number for this case, is best if we use the same units in every term of the formula.

Now that we have coherent units, we can calculate Pr
