The anti periplanar geometry for the E2 reaction of (CH3)2CHCH2Br with base is shown in the image attached as well as the structure of the product formed in the reaction.
In organic chemistry, an antiperiplanar conformation is one in which the groups point up and down at a dihedral angle of 180° away from one another. In the image attached, the antiperiplanar conformation of (CH3)2CHCH2Br is shown.
Recall that an E2 reaction is a synchronous elimination reaction where to atoms leave at the same time. The product of this reaction is also shown in the image attached.
Learn more: brainly.com/question/2510654
C
0.70
I hope this is help, I’m so so sorry if I’m incorrect
<u>Answer:</u> The spacing between the crystal planes is 
<u>Explanation:</u>
To calculate the spacing between the crystal planes, we use the equation given by Bragg, which is:

where,
n = order of diffraction = 2
= wavelength of the light =
(Conversion factor:
)
d = spacing between the crystal planes = ?
= angle of diffraction = 22.20°
Putting values in above equation, we get:

Hence, the spacing between the crystal planes is 
Answer:
The density of the metal is 0.561 g/mL
Explanation:
The computation of the density of the metal is shown below;
As we know that
The Density of the metal is

where,
Mass = 4.9g
Change in volume = 6.9 mL
Now place these values to the above formula
So, the density of the metal is

= 0.561 g/mL
Hence, the density of the metal is 0.561 g/mL
We simply applied the above formula so that the correct density could arrive
Salt<span> consists of positive sodium </span>ions<span> </span><span> and negative chloride </span>ions<span> </span>