Answer:
<h2>
a ∈ (-∞, -3></h2>
Step-by-step explanation:
<h3>-
21 ≥ 3(a - 7) + 9</h3><h3>
- 21 ≥ 3a - 21 + 9</h3>
+21 +21
<h3>
0 ≥ 3a + 9 </h3><h3>
3a + 9 ≤ 0</h3>
-9 -9
<h3>
3a ≤ - 9</h3>
÷3 ÷3
<h3>
a ≤ -3 </h3><h3>
a ∈ (-∞, -3></h3>
167 is the volume of the prism
I think you mean what's the name of it,
they are called ordered points.
Answer:
1
+
sec
2
(
x
)
sin
2
(
x
)
=
sec
2
(
x
)
Start on the left side.
1
+
sec
2
(
x
)
sin
2
(
x
)
Convert to sines and cosines.
Tap for more steps...
1
+
1
cos
2
(
x
)
sin
2
(
x
)
Write
sin
2
(
x
)
as a fraction with denominator
1
.
1
+
1
cos
2
(
x
)
⋅
sin
2
(
x
)
1
Combine.
1
+
1
sin
2
(
x
)
cos
2
(
x
)
⋅
1
Multiply
sin
(
x
)
2
by
1
.
1
+
sin
2
(
x
)
cos
2
(
x
)
⋅
1
Multiply
cos
(
x
)
2
by
1
.
1
+
sin
2
(
x
)
cos
2
(
x
)
Apply Pythagorean identity in reverse.
1
+
1
−
cos
2
(
x
)
cos
2
(
x
)
Simplify.
Tap for more steps...
1
cos
2
(
x
)
Now consider the right side of the equation.
sec
2
(
x
)
Convert to sines and cosines.
Tap for more steps...
1
2
cos
2
(
x
)
One to any power is one.
1
cos
2
(
x
)
Because the two sides have been shown to be equivalent, the equation is an identity.
1
+
sec
2
(
x
)
sin
2
(
x
)
=
sec
2
(
x
)
is an identity
Step-by-step explanation:
The range of the data is 12