Answer:
Average force, F = 562.5 N
Explanation:
Mass of the golf ball, m = 0.045 kg
Initially, it is at rest, u = 0
Final speed of the ball, v = 25 m/s
The club and the ball are in contact for, 
We need to find the average force acting on the ball. It can be calculated using the formula as :


F = 562.5 N
So, the average force acting on the ball is 562.5 N. Hence, this is the required solution.
Answer:
40.92 m/s
Explanation:
The computation is shown below:
Ek = 1 ÷2mv²...............................(1)
v = √(2Ek/m).......................... (2)
Here EK denotes kinetic energy
m denotes mass
v denotes velocity
Given that
m = 0.25kg and Ek = 209.3J
So,
v = √(2×209.3 ÷0.25)
= √1674.4
= 40.92 m/s
Answer:
I = 27kg.mi/h
Explanation:
In order to calculate the impulse of the ball, you use the following formula:
(1)
m: mass of the ball = 0.3kg
v: speed of the ball after the bat hit it = 60mi/h
vo: speed of the ball before the bat hit it = 30mi/h
You replace the values of all parameters in the equation (1):

where the minus sign of the initial velocity means that the motion of the ball is opposite to the final direction of such a motion.
The imulpse of the ball is 27 kg.miles/hour
Potential energy + kinetic energy = constant at every moment in time
At the highest point:
potential energy is at its maximum
kinetic energy is zero
Answer:
Frequency = 1,550Hz
Explanation:
To solve this we can use the equation:
(frequency = velocity/wavelength).
We are given the information that the wavelength is 22cm and the speed is 340m/s. The first step is to make sure everything is in the correct units (SI units), and to convert them if needed. The SI Units for velocity and wavelength are m/s and m respectively. This means we need to convert 22cm into meters, which we can do by dividing by 100, (as there are 100cm in a meter). 22/100 = 0.22m
Now we can substitute these values into the formula and calculate to solve:

Simplify to 3 significant figures:
f = 1,550Hz
(Which I believe is just below a G6 if you were interested)
Hope this helped!