1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katovenus [111]
3 years ago
9

The Coefficient of kinetic friction between the tires of your car and the roadway is \"μ\". (a) If your initial speed is \"v\" a

nd you lock your tires during breaking, how far do you skid? (b) What is the stopping distance for a truck with twice the mass of you car, assuming same initial speed and coefficient of kinetic friction.. . I'm stuck on (b), my mass cancels out every time, but that doesn't seem right
Physics
2 answers:
vazorg [7]3 years ago
3 0
We make use of the equation: v^2=v0^2+2a Δd. We substitute v^2 equals to zero since the final state is halting the truck. Hence we get the equation           -<span>v0^2/2a = Δd. F = m a from the second law of motion. Rearranging, a = F/m
</span>F = μ Fn where the force to stop the truck is the force perpendicular or normal force multiplied by the static coefficient of friction. We substitute, -v0^2/2<span>μ Fn/m</span> = Δd. This is equal to 
Hatshy [7]3 years ago
3 0

Answer:

a) stopping distance = (v^2 / 2*g*μ)

b) stopping distance = (v^2 / 2*g*μ)  

Explanation:

We will use the constant acceleration formula

u^2 = v^2 + 2*a*s    ------- (1)

  • u is the final velocity (m/s)
  • v is the initial velocity (m/s)
  • a is the acceleration (m/s^2)
  • s is the stopping distance (m/s)

Acceleration can be determined from the 2nd Law of motion

F = m*a ------- (2)

  • F is the force to stop the car/truck (N)
  • m is the mass of car (kg)

Coefficient of Friction is the ratio of applied force to the normal force, hence

μ = F/Fn ------- (3)

  • Fn is the normal force (N)

Fn = m*g ------- (4)

  • g is the gravitational acceleration (m/s^2)

Substituting equation (4) into equation (3), we get

F = m*g*μ ------- (5)

Substituting equation (5) in equation (2), we get

a = g*μ ------- (6)

Substituting equation (6) in equation (1), we get

u^2 = v^2 + 2*s*g*μ

Final velocity u is zero as the car is halting for part (a), hence

-v^2 = 2*s*g*μ

s = - ( v^2 /  2*g*μ)           SI unit is meters, m

The negative sign can be ignored as the car is decelerating (negative acceleration), so

s = (v^2 / 2*g*μ)

For part (b), we will simply substitute 2*m instead of m in the equations and carry out the same procedure as part (a). The answer that we get is the same as part (a), that is,

s = (v^2 / 2*g*μ)            SI unit is meters, m

Note: The reason we get the same answer for both the part is the fact that the stopping distance is independent of the mass. The force required to bring about truck is twice as much as that for the car but on the other hand the force generated due to friction in case of truck is also twice as much as that of the car. As all the other variables are similar, the stopping distance will be same.

You might be interested in
Many Amtrak trains can travel at a top speed of 42.0 m/s. Assuming a train maintains that speed for several hours, how many kilo
777dan777 [17]

Answer:

605 km

Explanation:

Hello

the same units of measure should be used, then

Step 1

convert  42 m/s ⇒   km/h

1 km =1000 m

1 h = 36000 sec

42 \frac{m}{s}*\frac{1\ km}{1000\ m}=0.042\ \frac{km}{s}\\ 0.042\ \frac{km}{s}\\

0.042\ \frac{km}{s}*\frac{3600\ s}{1\ h} =151.2 \frac{km}{h}\\ \\Velocity =151.2\ \frac{km}{h}

Step 2

find kilometers traveled after 4  hours

V=\frac{s}{t}\\ \\

V,velocity

s, distance traveled

t. time

now, isolating s

V=\frac{s}{t} \\s=V * t\\

and replacing

s=V * t\\s=151.2\frac{km}{h}*4 hours\\ s=604.8 km\\

S=604.8 Km

Have a great day

4 0
3 years ago
The amplitude of a paricular wave is 4.0 m. The crest to trough distance
kozerog [31]

Answer:

The crest to trough distance = 8 m

Explanation:

Given that,

The amplitude of a particular wave is 4.0 m.

We need to find the crest to trough distance.

We know that,

Amplitude = The distance from the base line to the crest or the the distance from the baseline to the trough.

It means,

Distance from crest to trough = 2(Amplitude)

= 2(4)

= 8 m

Hence, the crest to trough distance is equal to 8 m.

6 0
3 years ago
A dog is running at an initial speed of 10 m/s. He covers 50 m in 4 seconds. What is the acceleration of the dog?
nikdorinn [45]
D i hope this helps
:))
8 0
3 years ago
Absorbance measurements in the range of a = 0.3-2 are considered the most accurate. why would absorbance measurements of 0.05 an
zhenek [66]
Please provide the choices to select the possible choices.
6 0
3 years ago
determine the maximum angle theta for which the light rays incident on the end of the optical fiber of radius 1 mm are subhect t
Vesna [10]

Answer:

Explanation:

Let the critical angle be C .

sinC = 1 / μ where μ is index of refraction .

sinC = 1 /1.2

= .833

C = 56°

Then angle of refraction r = 90 - 56 = 34 ( see the image in attached file )

sin i / sinr = 1.2 , i is angle of incidence

sini = 1.2 x sinr = 1.2 x sin 34 = .67

i = 42°.  

7 0
3 years ago
Other questions:
  • What element would a metal, like sodium, most likely combine with?
    13·2 answers
  • A certain wire, 3 m long, stretches by 1.2 mm when under tension of 200 N. By how much does an equally thick wire 6 m long, made
    9·2 answers
  • The picture below shows the positions of the Earth, Sun, and Moon during an eclipse.
    12·2 answers
  • A 2 kg ball travelling West at 6 m/s collides with a 3 kg ball travelling South at 4 m/s stick together and move off with a comm
    15·1 answer
  • HELP!!
    14·2 answers
  • The 20-g bullet is travelling at 400 m/s when it becomes embedded in the 2-kg stationary block. The coefficient of kinetic frict
    11·2 answers
  • Magnitude F have a
    7·1 answer
  • A 2 kg ball if at rest. If the ball accelerates to 20 m/s, what is the change in momentum?
    15·1 answer
  • En las olimpiadas del 2012 del colegio villapalos maria gano la carrera de los 100 m en 10,56 s y la de 200 m en 22,34 s ¿en cua
    5·1 answer
  • What is the mass of a bullet moving at 970 m/s if the bullet’s kinetic energy is 3.0 x 10^3 J?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!