1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katovenus [111]
3 years ago
9

The Coefficient of kinetic friction between the tires of your car and the roadway is \"μ\". (a) If your initial speed is \"v\" a

nd you lock your tires during breaking, how far do you skid? (b) What is the stopping distance for a truck with twice the mass of you car, assuming same initial speed and coefficient of kinetic friction.. . I'm stuck on (b), my mass cancels out every time, but that doesn't seem right
Physics
2 answers:
vazorg [7]3 years ago
3 0
We make use of the equation: v^2=v0^2+2a Δd. We substitute v^2 equals to zero since the final state is halting the truck. Hence we get the equation           -<span>v0^2/2a = Δd. F = m a from the second law of motion. Rearranging, a = F/m
</span>F = μ Fn where the force to stop the truck is the force perpendicular or normal force multiplied by the static coefficient of friction. We substitute, -v0^2/2<span>μ Fn/m</span> = Δd. This is equal to 
Hatshy [7]3 years ago
3 0

Answer:

a) stopping distance = (v^2 / 2*g*μ)

b) stopping distance = (v^2 / 2*g*μ)  

Explanation:

We will use the constant acceleration formula

u^2 = v^2 + 2*a*s    ------- (1)

  • u is the final velocity (m/s)
  • v is the initial velocity (m/s)
  • a is the acceleration (m/s^2)
  • s is the stopping distance (m/s)

Acceleration can be determined from the 2nd Law of motion

F = m*a ------- (2)

  • F is the force to stop the car/truck (N)
  • m is the mass of car (kg)

Coefficient of Friction is the ratio of applied force to the normal force, hence

μ = F/Fn ------- (3)

  • Fn is the normal force (N)

Fn = m*g ------- (4)

  • g is the gravitational acceleration (m/s^2)

Substituting equation (4) into equation (3), we get

F = m*g*μ ------- (5)

Substituting equation (5) in equation (2), we get

a = g*μ ------- (6)

Substituting equation (6) in equation (1), we get

u^2 = v^2 + 2*s*g*μ

Final velocity u is zero as the car is halting for part (a), hence

-v^2 = 2*s*g*μ

s = - ( v^2 /  2*g*μ)           SI unit is meters, m

The negative sign can be ignored as the car is decelerating (negative acceleration), so

s = (v^2 / 2*g*μ)

For part (b), we will simply substitute 2*m instead of m in the equations and carry out the same procedure as part (a). The answer that we get is the same as part (a), that is,

s = (v^2 / 2*g*μ)            SI unit is meters, m

Note: The reason we get the same answer for both the part is the fact that the stopping distance is independent of the mass. The force required to bring about truck is twice as much as that for the car but on the other hand the force generated due to friction in case of truck is also twice as much as that of the car. As all the other variables are similar, the stopping distance will be same.

You might be interested in
2 resistors of resistance 1000 ohm and 2000 ohm are joined in series with a 100V supply. A voltmeter of internal resistance 4000
Vadim26 [7]
<h2>The voltmeter reading will be 35.7 volt </h2>

Explanation:

The resistor 1000 ohm and 4000 ohm are connected in parallel .

Their combined resistance is supposed R₁

Thus \frac{1}{R_1} = \frac{1}{1000} + \frac{1}{4000}  

or R₁ = 800 ohm

Therefore the total resistance in circuit is = 2000 + 800 = 2800 ohm

Because these are in series .

We can find  current flowing through the circuit  I = \frac{V}{R} = \frac{100}{2800} = \frac{1}{28}

here R is total resistance .

The potential difference across 1000 ohm = \frac{1}{28} x 1000 = 35.7 volt

Thus voltmeter reading will be 35.7 volt

5 0
3 years ago
1. the most suitable cutting process to use on ferrous metals such as straight carbon steel is
dangina [55]

Answer:

plasma arc

cutting

Explanation:

It is plasma arc cutting because i think it is

6 0
3 years ago
Read 2 more answers
In a ballistics test, a 24 g bullet traveling horizontally at 1200 m/s goes through a 31-cm-thick 320 kg stationary target and e
Zanzabum

Answer:

The  velocity is  v_t  =  0.02175 \  m/s

Explanation:

From the question we are told that

   The  mass of the bullet is  m_b  =  0.024 \  kg

    The initial speed of the bullet is  u_b  =  1200 \  m/s

   The mass of the target is  m_t  =  320 \  kg

    The  initial velocity of target is  u_t  =  0  \ m/s

    The  final velocity of the bullet is  is  v_b  =  910 \  m/s

   

Generally according to the law of momentum conservation we have that

      m_b *  u_b  +  m_t *  u_t  =  m_b *  v_b  +  m_t  *  v_t

=>   0.024  *  1200  +  320 *  0  =  0.024 *  910   +  320  *  v_t

=>    v_t  =  0.02175 \  m/s

3 0
3 years ago
What does the magnitude of centripetal acceleration depend on ?
MariettaO [177]

Explanation:

Centripetal acceleration ac is the acceleration experienced while in uniform circular motion. It always points toward the center of rotation. It is perpendicular to the linear velocity v and has the magnitude ac=v2r;ac=rω2 a c = v 2 r ; a c = r ω 2 .

3 0
3 years ago
How will the magnetic field of a straight wire carrying a constant current interact with the needle of a compass? Does the inter
Yuki888 [10]

Answer:

the needle will direct its North South according to the magnetic field of current carrying wire.

Explanation:

A current carrying wire always has a magnetic field around it, in circular loops. This magnetic field will be either clockwise or anticlockwise depending on the direction of current.

Right hand rule tells the direction. Place the current carrying wire in your right hand with thumb pointing the direction of current. Curl of the fingers tell the direction of current.

When the needle gets in the vicinity of the field, its poles aligns itself with the field. (previous position of the compass needle has no effect on its position in the field). The north pole and south pole will be set in the direction of magnetic field.

The distance between the needle and wire does effect the strength (accuracy) of the needle position. Strong field will create strong deflection of the needle whereas when the distance from wire increases, field weakens, thus the deflection of needle will be weak.

5 0
3 years ago
Other questions:
  • Why does cold weather feel colder inside?
    5·1 answer
  • Soil formation involves both
    12·1 answer
  • What is the difference between speed and velocity?
    14·1 answer
  • The sun generates both mechanical and electromagnetic waves. Which statement about those waves is true?
    14·1 answer
  • Select the correct answer. x y 2.5 6.25 9.4 88.36 15.6 243.63 19.5 380.25 25.8 665.64 The table lists the values for two paramet
    12·1 answer
  • Solar evaporation ponds are shallow so that the sun can heat them up, causing the water to evaporate, which increases the salt c
    8·1 answer
  • what were the negative results with the american television from analog broadcast to digital broadcast?
    10·2 answers
  • What percentage of the acceleration at Earth's surface is the acceleration due to gravity at the position of a satellite located
    8·1 answer
  • A driver in a 2290-kg car car traveling at 42.7 m/s slams on the brakes and skids to a stop. If the coefficient of friction betw
    9·1 answer
  • A pressure sensor inside of a mixing tank is designed to turn red when the pressure inside the tank exceeds 1.9 kPa. If the sens
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!