The question is incomplete, here is the complete question:
Carbon tetrachloride reacts at high temperatures with oxygen to produce two toxic gases, phosgene and chlorine.
at 1,000 K
Calculate Kc for the reaction 
<u>Answer:</u> The value of
for the final reaction is 
<u>Explanation:</u>
The given chemical equations follows:

We need to calculate the equilibrium constant for the equation, which is:

As, the final reaction is the twice of the initial equation. So, the equilibrium constant for the final reaction will be the square of the initial equilibrium constant.
The value of equilibrium constant for net reaction is:

We are given:

Putting values in above equation, we get:

Hence, the value of
for the final reaction is 
Answer:
1) The elements have filled valence levels.
Explanation:
Since they have filled valence levels, they're stable and don't need to electrons to fill their valence shells since they're already full.
2) False, They do have electrons
3) False, He does have only one electron shell, but going down the periods, every next element have one more electron shell than a preceding one has.
4)False, they're actually the smallest atoms of their respective period
It’s called Diethyl ether so I think the answer is D
Answer:
A Bronsted-Lowry acid like and Arrhenius acid is a compound that breaks down to give an H+ in solution. The only difference is that the solution does not have to be water. ... An Arrhenius base is a molecule that when dissolved in water will break down to yield an OH- or hydroxide in solution.
Explanation:
Answer:
Elements in which the d-sublevel is being filled have the properties of metals