Answer:
adapted from NOVA, a team of historians, engineers, and trade experts recreate a medieval throwing machine called a trebuchet. To launch a projectile, a trebuchet utilizes the transfer of gravitational potential energy into kinetic energy. A massive counterweight at one end of a lever falls because of gravity, causing the other end of the lever to rise and release a projectile from a sling. As part of their design process, the engineers use models to help evaluate how well their designs will work.
Explanation:
Well let’s put it this way. To find the neutrons you subtract the atomic atomic Nuremberg from the atomic mass. So
Mass=81-Number=28
81-28=53
Final answer is 53.
Answer:
71.4583 Hz
67.9064 N
Explanation:
L = Length of tube = 1.2 m
l = Length of wire = 0.35 m
m = Mass of wire = 9.5 g
v = Speed of sound in air = 343 m/s
The fundamental frequency of the tube (closed at one end) is given by

The fundamental frequency of the wire and tube is equal so he fundamental frequency of the wire is 71.4583 Hz
The linear density of the wire is

The fundamental frequency of the wire is given by

The tension in the wire is 67.9064 N
Answer:
ee that the lens with the shortest focal length has a smaller object
Explanation:
For this exercise we use the constructor equation or Gaussian equation
where f is the focal length, p and q are the distance to the object and the image respectively.
Magnification a lens system is
m =
= -
h ’= -\frac{h q}{p}
In the exercise give the value of the height of the object h = 0.50cm and the position of the object p =∞
Let's calculate the distance to the image for each lens
f = 6.0 cm

as they indicate that the light fills the entire lens, this indicates that the object is at infinity, remember that the light of the laser rays is almost parallel, therefore p = inf
q = f = 6.0 cm
for the lens of f = 12.0 cm q = 12.0 cn
to find the size of the image we use
h ’= h q / p
where p has a high value and is the same for all systems
h ’= h / p q
Thus
f = 6 cm h ’= fo 6 cm
f = 12 cm h ’= fo 12 cm
therefore we see that the lens with the shortest focal length has a smaller object
Responder:
A. Ff = 300 N N = 784,8 N
Explicación:
Dado
Masa del cuerpo = 80 kg
Fuerza de movimiento Fm = 300N
Dado que el cuerpo no está acelerando, la fuerza de fricción (Ff) es igual a la fuerza de movimiento que actúa sobre el cuerpo, ya que la fuerza de fricción es una fuerza de oposición, es decir, Fm = Ff
Dado que Fm = 300N, Ff = 300N
La reacción normal que actúa en el cuerpo es igual al peso.
N = W = mg
g es la aceleración debida a la gravedad
g = 9,8 m / s
N = mg
N = 80 (9,81)
N = 784,8N
Por tanto, la fuerza normal que actúa sobre el cuerpo es 784,8 N