Answer:
You were a freeloader of my questions, so I'll be one too.
Answer:
I. 0 m/s
II. 20 m/s
III. Part BC
Explanation:
I. Determination of the initial velocity.
From the diagram given above,
The motion of the car starts from the origin. This implies that the car start from rest and as such, the initial velocity of the car is 0 m/s
II. Determination of the maximum velocity attained.
From the diagram given above, we can see clearly that the maximum velocity is 20 m/s.
III. Determination of the part of the graph that represents zero acceleration.
It important that we know the meaning of zero acceleration.
Zero acceleration simply means the car is not accelerating. This can only be true when the car is moving with a constant velocity.
From the graph given above, the car has a constant velocity between B and C.
Therefore, part BC illustrates zero acceleration.
Answer:
The bullet's initial speed is 243.21 m/s.
Explanation:
Given that,
Mass of the bullet, 
Mass of the pendulum, 
The center of mass of the pendulum rises a vertical distance of 10 cm.
We need to find the bullet's initial speed if it is assumed that the bullet remains embedded in the pendulum. Let it is v. In this case, the energy of the system remains conserved. The kinetic energy of the bullet gets converted to potential energy for the whole system. So,
V is the speed of the bullet and pendulum at the time of collision
Now using conservation of momentum as :
Put the value of V from equation (1) in above equation as :

So, the bullet's initial speed is 243.21 m/s.
Answer:
Amy's speed is 2/3 faster than Bill's
Explanation:
can't believe you don't know how to do this.
Answer:
Explanation:
The velocity of the vehicle would increase because the the tanks (when filled with water) must have exerted a force which would reduce the velocity of the vehicle at a certain pressure on the gas pedal. Note that force equals mass multiplied by acceleration; as the mass decreases, so the force decreases. Thus, when the mass exerted by this tanks (on the vehicle) decrease as a result of the hole punctured in them, the force exerted by the tanks would also decrease causing an increase in velocity of the pick up truck when the same pressure is applied on the gas pedal throughout (before and after the puncture).
The conservation law that applied here is the law of conservation of energy which states that energy can neither be created nor destroyed but can be transformed from one form to another. This is because the energy the vehicle used in carrying the load (the tanks) was transformed to the energy that resulted in increasing it's velocity (no new energy was formed as the pressure on the gas pedal remained the same).