Answer:
An electron is a negatively charged subatomic particle and a proton is a positively charged subatomic particle. Positive charge(s) attract negative charge(s) and vice versa. The proton and neutron stay together and attract one another to give the atom an overall charge of zero (neutral). Which is the charge of an atom. When there is an unequal number of protons and neutrons an ion is formed. If the number of protons are more than the electron, a positively charged ion called cation is formed. On the other hand, if the number of electrons are more than the protons a negatively charged ion called anion is formed.
If the element has a charge of +2 it has lost two electrons giving it an overall positive charge making it a cation. In order to find the number of electrons, take the elements atomic number and subtract two since it lost two electrons
<u>Given:</u>
Mass of pure iron (Fe) = 3.4 g
<u>To determine:</u>
Mass of HBr needed to dissolve the above iron
<u>Explanation:</u>
Reaction between HBr and Fe is
Fe + 2HBr → FeBr₂ + H₂
Based on the reaction stoichiometry-
1 mole of Fe reacts with 2 moles of HBr
# moles of Fe = mass of Fe/atomic mass of Fe = 3.4/56 g.mol⁻¹ = 0.0607 moles
Therefore # moles of HBr = 2*0.0607 = 0.1214 moles
Molar mass of HBr = 81 g/mole
Mass of HBr = 0.1214 moles * 81 g/mole = 9.83 g
Ans: Mass of HBR required is 9.83 g
Protons are positively charged neutrons are neutrally charged amd electrons are negatively charged. Therefore only the protons in this instance are charged
Answer:
1) 0.18106 M is the molarity of the resulting solution.
2) 0.823 Molar is the molarity of the solution.
Explanation:
1) Volume of stock solution = 
Concentration of stock solution = 
Volume of stock solution after dilution = 
Concentration of stock solution after dilution = 
( dilution )

0.18106 M is the molarity of the resulting solution.
2)
Molarity of the solution is the moles of compound in 1 Liter solutions.

Mass of potassium permanganate = 13.0 g
Molar mass of potassium permangante = 158 g/mol
Volume of the solution = 100.00 mL = 0.100 L ( 1 mL=0.001 L)

0.823 Molar is the molarity of the solution.