A non-chlorine chemical such as iodine may be used as a
sanitizing solution. To use iodine as a sanitizing solution, it should be
around 12.5-25 ppm in water that is at least 75° F. Utensils and equipment must
be immersed for only 30 seconds because it may lose its effectivity if the pH
level gets too high due to high temperature. Discoloration may also result if
the utensils and equipment are in prolonged contact with the solution.
Acidic and basic are two extremes that describe chemicals, just like hot and cold are two extremes that describe temperature. Mixing acids and bases can cancel out their extreme effects, much like mixing hot and cold water can even out the water temperature. A substance that is neither acidic nor basic is neutral.
The character of acidic, basic and neutral is defined by the concentration of hydrogen ions [H+](mol/L). A solution with a concentration of hydrogen ions higher than 10-7mol/L is acidic, and a solution with a lower concentration is alkaline (another way to say basic). Using the formula, pH=-log[H+], a pH of 7 is neutral, a pH less than 7 is acidic, and a pH greater than 7 is basic. As one can see from this formula, ten times a given concentration of hydrogen ions means one unit lower in terms of pH value (higher acidity), and vice versa.
The formula for ph is given by:pH=−log10[H+]
What is the concentration of H+ ions at a pH = 8?
In calculating for the concentration of hydrogen ion, the formula is given by:[H+]=(10)^(-pH)
Solution:
[H+]=(10)^(-8)[H+]=0.00000001 mol/L
What is the concentration of OH– ions at a pH = 8?pH+pOH=148+pOH=14pOH=6
[OH-]=(10)^(-pOH)[OH-]=(10)^(-6)[OH-]=0.000001
What is the ratio of H+ ions to OH– ions at a pH = 2?The ratio is 0.00000001:0.000001 which is equal to 0.01
Answer:
O a polymer
Explanation:
When many repeating simple subunits are joined together, this results into a polymer.
The simplest unit or smallest unit of any substance is called a monomer. When many units of a monomer joins together, a polymer results.
- For proteins, the monomeric unit is amino-acid.
- When they combine they form longer chain molecules called proteins.
- For carbohydrates, the monomeric unit is called glucose.
- When they are combined they give us a wide range of carbohydrate molecules.
Answer:
1(a) N = 3
(b) N = 0
(c) N = 5
(d) N = -2
(2) Molecular formula for benzene is C6H6
Explanation:
1(a) N02 1-
N + (2×-2) = -1
N-4 = -1
N = -1+4 = 3
(b) N2
2(N) = 0
N = 0/2 = 0
(c) NO2Cl
N + ( 2×-2) + (-1) = 0
N - 4 - 1 = 0
N - 5 = 0
N = 0+5 = 5
(d) N2H4
2(N) + (4×1) = 0
2N + 4 = 0
2N = 0 - 4 = -4
N = -4/2 = -2
(2) Molcular mass of benzene = 78g/mole = (6×12g of carbon) + (6×1g of hydrogen) = 72+6 = 78g/mole
Therefore, molecular formula for benzene is C6H6
Answer:
Explanation:
The given reaction equation is:
2A + 4B → C + 3D
We know the mass of compound A in the reaction above. We are to find the mass of compound D.
We simply work from the known mass to calculate the mass of the unkown compound D
Using the mole concept, we can find the unknown mass.
Procedures
- We first find the molar mass of the compound A from the atomic units of the constituent elements.
- We then use the molar mass of A to calculate its number of moles using the expression below:
Number of moles of A = 
- Using the known number of moles of A, we can work out the number of moles of D.
From the balanced equation of the reaction, it is shown that:
2 moles of compound A was used up to produced 3 moles of D
Then
x number of moles of A would give the number of moles of D
- Now that we know the number of moles of D, we can find its mass using the expression below:
Mass of D = number of moles of D x molar mass of D