Answer:
9. The force is a force of attraction and it is 2.95N
10. The magnitude of acceleration 35.12m/s^2 and the direction of this acceleration is away from the other balloon.
Explanation:
Parameters given:
Q1 = 3.4 * 10^-6C
Q2 = - 5.1 * 10^-6C
Distance between the two balloons = 23cm = 0.23m
9. Force acting between the two balloons is a force of attraction because they are unlike charges. Hence, the force between them is:
F = kQ1Q2/r^2
F = (9 *10^9 * 3.4 * 10^-6 * -5.1 * 10^-6)/(2.3 * 10^-1)^2
F = (1.56 * 10^-1)/(5.29 * 10^-2)
F = - 2.95N
10. Assuming that Balloon A has a mass, m, of 0.084kg, then:
F = ma
Where a = acceleration
a = F/m
a = -2.95/0.084
a = - 35.12m/s^2
The acceleration has a magnitude of 35.12m/s^2 and its direction is away from balloon B.
The negative sign shows that the balloon A is slowing down as it moves towards balloon B. Hence, it's velocity is reducing slowly.
"Mars" like earth experiences seasons
In short, Your Answer would be option A
Hope this helps!
Answer:
Angle of light at which it will travel in the quartz is given as

Explanation:
As we know that the refractive index of a medium is the ratio of speed of light in air and speed of light in the medium
So we will have

here we have


now by Snell's law we have



Answer:
p = -q
he distance is equal to the current distance, so the distance does not change
Explanation:
For this exercise we can solve it using the equation of the constructor
1 / f = 1 / p + 1 / q
where f is the focal length, p the distance to the object and q the distance to the image
For a flat surface the radius is at infinity, therefore 1 / f = 0, which implies
1 / p = - 1 / q
p = -q
Therefore the distance is equal to the current distance, so the distance does not change