The answer is letter A definitively .
A homogeneous mixture has the same uniform appearance and composition throughout. Many homogeneous mixtures are commonly referred to as solutions. A heterogeneous mixture consists of visibly different substances or phases. The three phases or states of matter are gas, liquid, and solid.
Hope this helps you!
Answer:
1. d[H₂O₂]/dt = -6.6 × 10⁻³ mol·L⁻¹s⁻¹; d[H₂O]/dt = 6.6 × 10⁻³ mol·L⁻¹s⁻¹
2. 0.58 mol
Explanation:
1.Given ΔO₂/Δt…
2H₂O₂ ⟶ 2H₂O + O₂
-½d[H₂O₂]/dt = +½d[H₂O]/dt = d[O₂]/dt
d[H₂O₂]/dt = -2d[O₂]/dt = -2 × 3.3 × 10⁻³ mol·L⁻¹s⁻¹ = -6.6 × 10⁻³mol·L⁻¹s⁻¹
d[H₂O]/dt = 2d[O₂]/dt = 2 × 3.3 × 10⁻³ mol·L⁻¹s⁻¹ = 6.6 × 10⁻³mol·L⁻¹s⁻¹
2. Moles of O₂
(a) Initial moles of H₂O₂

(b) Final moles of H₂O₂
The concentration of H₂O₂ has dropped to 0.22 mol·L⁻¹.

(c) Moles of H₂O₂ reacted
Moles reacted = 1.5 mol - 0.33 mol = 1.17 mol
(d) Moles of O₂ formed

If you start with 0.30 m Mn₂ , at 12.5 pH, free Mn₂ concentration be equal to 4.6 x 10⁻¹¹ m
Initial molarity of Mn₂ = 0.30 M
Final molarity of Mn₂ = 4.6 x 10⁻¹¹
pH = ?
Ksp [Mn(OH)₂] = 4.6 x 10⁻¹⁴ (standard value)
Write the ionic equation
Mn(OH)₂ → Mn⁺² + 2OH⁻
[Mn⁺²] = 4.6 x 10⁻¹¹
We will calculate the concentration of OH⁻ by using Ksp expression
Ksp = [Mn⁺²][OH-]²
[Mn⁺²][OH⁻]² = 4.6 x 10⁻¹⁴
[OH⁻]² = 4.6 x 10⁻¹⁴ / 4.6 x 10⁻¹¹
[OH⁻]² = 10⁻³
[OH⁻] = (10⁻³)¹⁽²
[OH⁻] = 0.0316 M
Calculate the pOH
pOH = -log [OH⁻]
pOH = -log [0.0316]
pOH = 1.5
Now calculate pH
pH = 14 - pOH
pH = 14 - 1.5
pH = 12.5
You can also learn about molarity from the following question:
brainly.com/question/14782315
#SPJ4